Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Monte-Carlo Methods & Stochastic Pr, Gobet


Варианты приобретения
Цена: 13779.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Gobet
Название:  Monte-Carlo Methods & Stochastic Pr
ISBN: 9781498746229
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1498746225
Обложка/Формат: Hardback
Страницы: 336
Вес: 0.63 кг.
Дата издания: 20.07.2016
Язык: English
Иллюстрации: 3 tables, black and white; 30 illustrations, black and white
Размер: 159 x 236 x 24
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Probability & statistics, MATHEMATICS / Probability & Statistics / Bayesian Analysis
Основная тема: Probability
Подзаголовок: From linear to non-linear
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Developed from the authors course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method.

The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.



Stochastic Calculus for Finance I

Автор: Shreve
Название: Stochastic Calculus for Finance I
ISBN: 0387401008 ISBN-13(EAN): 9780387401003
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Developed for the professional Master`s program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S. Has been tested in the classroom and revised over a period of several yearsExercises conclude every chapter;

Monte Carlo Methods in Financial Engineering

Автор: Glasserman
Название: Monte Carlo Methods in Financial Engineering
ISBN: 0387004513 ISBN-13(EAN): 9780387004518
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not."

Mathematical methods and models for economists

Автор: Fuente, Angel de la.
Название: Mathematical methods and models for economists
ISBN: 0521585295 ISBN-13(EAN): 9780521585293
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is intended as a textbook for a first-year PhD course in mathematics for economists and as a reference for graduate students in economics. It provides a self-contained, rigorous treatment of most of the concepts and techniques required to follow the standard first-year theory sequence in micro and macroeconomics.

Stochastic methods

Автор: Gardiner, Crispin W.
Название: Stochastic methods
ISBN: 3540707123 ISBN-13(EAN): 9783540707127
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the third edition of this classic the chapter on quantum Marcov processes has been replaced by a chapter on numerical treatment of stochastic differential equations to make the book even more valuable for practitioners.

Stochastic Simulation and Monte Carlo Methods

Название: Stochastic Simulation and Monte Carlo Methods
ISBN: 3642393624 ISBN-13(EAN): 9783642393624
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия