Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Stochastic Simulation and Monte Carlo Methods, 


Варианты приобретения
Цена: 8384.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Stochastic Simulation and Monte Carlo Methods
ISBN: 9783642393624
Издательство: Springer
Классификация:



ISBN-10: 3642393624
Обложка/Формат: Hardback
Страницы: 264
Вес: 0.56 кг.
Дата издания: 17.07.2013
Серия: Stochastic modelling and applied probability
Язык: English
Издание: 2013 ed.
Иллюстрации: Xvi, 260 p.
Размер: 243 x 160 x 20
Читательская аудитория: Professional & vocational
Подзаголовок: Mathematical foundations of stochastic simulation
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes.


Discrete Choice Methods with Simulation

Автор: Train Kenneth E
Название: Discrete Choice Methods with Simulation
ISBN: 0521747384 ISBN-13(EAN): 9780521747387
Издательство: Cambridge Academ
Рейтинг:
Цена: 7445.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Each of the major models is covered including logit, generalized extreme value, or GEV, probit, and mixed logit, plus a variety of specifications that build on these basics.

Monte Carlo Methods in Financial Engineering

Автор: Glasserman
Название: Monte Carlo Methods in Financial Engineering
ISBN: 0387004513 ISBN-13(EAN): 9780387004518
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not."

Stochastic Calculus for Finance I

Автор: Shreve
Название: Stochastic Calculus for Finance I
ISBN: 0387401008 ISBN-13(EAN): 9780387401003
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Developed for the professional Master`s program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S. Has been tested in the classroom and revised over a period of several yearsExercises conclude every chapter;

Stochastic Simulation: Algorithms and Analysis

Автор: Asmussen
Название: Stochastic Simulation: Algorithms and Analysis
ISBN: 038730679X ISBN-13(EAN): 9780387306797
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods , as well as accompanying mathematical analysis of the convergence properties of the methods discussed . The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first  half of the book focusses on general methods, whereas the second half discusses model-specific algorithms. Given the wide range of  examples, exercises and applications students, practitioners and researchers in  probability, statistics, operations research, economics, finance, engineering  as well as biology and chemistry and physics will find the book of value.  Soren Asmussen is Professor of Applied Probability at Aarhus University, Denmark and Peter Glynn is Thomas Ford Professor of  Engineering at Stanford University. 

Stochastic methods

Автор: Gardiner, Crispin W.
Название: Stochastic methods
ISBN: 3540707123 ISBN-13(EAN): 9783540707127
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the third edition of this classic the chapter on quantum Marcov processes has been replaced by a chapter on numerical treatment of stochastic differential equations to make the book even more valuable for practitioners.

Mean Field Simulation for Monte Carlo Integration

Автор: Del Moral
Название: Mean Field Simulation for Monte Carlo Integration
ISBN: 1138198730 ISBN-13(EAN): 9781138198739
Издательство: Taylor&Francis
Рейтинг:
Цена: 7961.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters.

Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods.

Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology.

This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.

Monte-Carlo Methods & Stochastic Pr

Автор: Gobet
Название: Monte-Carlo Methods & Stochastic Pr
ISBN: 1498746225 ISBN-13(EAN): 9781498746229
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Developed from the author's course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method.

The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.

Advances in Stochastic Simulation Methods

Автор: N. Balakrishnan; V.B. Melas; S. Ermakov
Название: Advances in Stochastic Simulation Methods
ISBN: 146127091X ISBN-13(EAN): 9781461270911
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a volume consisting of selected papers that were presented at the 3rd St. Petersburg Workshop on Simulation held at St. Petersburg, Russia, during June 28-July 3, 1998.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Numerical methods for stochastic computations

Автор: Xiu, Dongbin
Название: Numerical methods for stochastic computations
ISBN: 0691142122 ISBN-13(EAN): 9780691142128
Издательство: Wiley
Рейтинг:
Цена: 9504.00 р.
Наличие на складе: Поставка под заказ.

Описание: Focusing on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). It illustrates through examples Basic gPC methods, and includes polynomial approximation theory and probability theory.

Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.

Название: Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.
ISBN: 146127074X ISBN-13(EAN): 9781461270744
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия