Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains, Todd Hester


Варианты приобретения
Цена: 19591.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Todd Hester
Название:  TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
ISBN: 9783319011677
Издательство: Springer
Классификация:



ISBN-10: 3319011677
Обложка/Формат: Hardcover
Страницы: 165
Вес: 0.44 кг.
Дата издания: 04.07.2013
Серия: Studies in Computational Intelligence
Язык: English
Издание: 2013 ed.
Иллюстрации: 55 colour illustrations, biography
Размер: 234 x 158 x 18
Читательская аудитория: Professional & vocational
Основная тема: Computational Intelligence
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.


Transfer in Reinforcement Learning Domains

Автор: Matthew Taylor
Название: Transfer in Reinforcement Learning Domains
ISBN: 3642018815 ISBN-13(EAN): 9783642018817
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement Learning Background.- Related Work.- Empirical Domains.- Value Function Transfer via Inter-Task Mappings.- Extending Transfer via Inter-Task Mappings.- Transfer between Different Reinforcement Learning Methods.- Learning Inter-Task Mappings.- Conclusion and Future Work.

Reinforcement Learning

Автор: Marco Wiering; Martijn van Otterlo
Название: Reinforcement Learning
ISBN: 364244685X ISBN-13(EAN): 9783642446856
Издательство: Springer
Рейтинг:
Цена: 32651.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents up-to-date information on the main contemporary sub-fields of reinforcement learning, including partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations.

Qualitative Spatial Abstraction in Reinforcement Learning

Автор: Lutz Frommberger
Название: Qualitative Spatial Abstraction in Reinforcement Learning
ISBN: 3642266002 ISBN-13(EAN): 9783642266003
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.

Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems

Автор: Hoai-Nam Nguyen
Название: Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems
ISBN: 331902826X ISBN-13(EAN): 9783319028262
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Focusing on groundbreaking interpolating control methods that are computationally simpler than model predictive control, particularly for high-order systems, this text includes a wealth of worked examples and a collection of adaptable MATLAB (R) script files.

Temporal Data Mining via Unsupervised Ensemble Learning

Автор: Yang Yun
Название: Temporal Data Mining via Unsupervised Ensemble Learning
ISBN: 0128116544 ISBN-13(EAN): 9780128116548
Издательство: Elsevier Science
Рейтинг:
Цена: 7241.00 р.
Наличие на складе: Поставка под заказ.

Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.

Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II

Автор: Paolo Arena; Luca Patan?
Название: Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots II
ISBN: 3319023616 ISBN-13(EAN): 9783319023618
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Describing a cutting-edge project that used a computational model of an insect brain to enable spatial awareness in mobile robots, this volume shows how today`s scientists are blending biologically inspired networks and complex, nonlinear dynamical systems.

Transfer in Reinforcement Learning Domains

Автор: Matthew Taylor
Название: Transfer in Reinforcement Learning Domains
ISBN: 3642101860 ISBN-13(EAN): 9783642101861
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research.

Adaptive Representations for Reinforcement Learning

Автор: Shimon Whiteson
Название: Adaptive Representations for Reinforcement Learning
ISBN: 3642422314 ISBN-13(EAN): 9783642422317
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presenting the main results of new algorithms for reinforcement learning, this book also introduces a novel method for devising input representations as well as presenting a way to find a minimal set of features sufficient to describe the agent`s current state.

Advanced Analysis and Learning on Temporal Data

Автор: Douzal-Chouakria
Название: Advanced Analysis and Learning on Temporal Data
ISBN: 3319444115 ISBN-13(EAN): 9783319444116
Издательство: Springer
Рейтинг:
Цена: 5870.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The last part of the book is dedicated to metric learning and time series comparison, it addresses the problem of speeding-up the dynamic time warping or dealing with multi-modal and multi-scale metric learning for time series classification and clustering.

Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots

Автор: Paolo Arena; Luca Patan?
Название: Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots
ISBN: 3642100147 ISBN-13(EAN): 9783642100147
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume collects significant results of the research Project called "SPARK". Its aim was to develop new cognitive architectures and sensing-perceiving-moving artefacts, inspired by the basic principles of living systems and based on "self-organization".


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия