Описание: Apply predictive analytics throughout all stages of workforce management People Analytics in the Era of Big Data provides a blueprint for leveraging your talent pool through the use of data analytics.
Автор: Foster Provost Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking ISBN: 1449361323 ISBN-13(EAN): 9781449361327 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть (1 шт.) Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.
Автор: Malley Название: Statistical Learning for Biomedical Data ISBN: 0521699096 ISBN-13(EAN): 9780521699099 Издательство: Cambridge Academ Рейтинг: Цена: 6494.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Описание: Provides an introduction to the concepts of statistical analysis of data for students at undergraduate and graduate level. This text also provides tools for data reduction and error analysis commonly required in the physical sciences. It features a variety of numerical and graphical techniques, and emphasizes methods of handling data than theory.
Автор: Mukherjee, Chandan Etc. White, Howard Wuyts, Mark Название: Econometrics and data analysis for developing countries ISBN: 0415094003 ISBN-13(EAN): 9780415094009 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A rigorous but accessible foundation to modern data analysis and econometric practice. Contains many examples and exercises and data from developing countries which is available for immediate use on a free floppy disk.
Автор: Janert Philipp K. Название: Data Analysis with Open Source Tools ISBN: 0596802358 ISBN-13(EAN): 9780596802356 Издательство: Wiley Рейтинг: Цена: 5067.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Real World Data Analysis shows you how you think about data and the results you want to achieve with it. Author Philipp Janert teaches you how to effectively approach data analysis problems, and how to extract all the available information from your data. This book shows you how to look at the results and know whether they`re meaningful.
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Поставка под заказ.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Описание: Unlike other handbooks in this emerging field, this guide focuses on the challenges and critical parameters in running a metabolomics study, including such often-neglected issues as sample preparation, choice of separation and detection method, recording and evaluating data as well as method validation.
Автор: Koch Название: Analysis of Multivariate and High-Dimensional Data ISBN: 0521887933 ISBN-13(EAN): 9780521887939 Издательство: Cambridge Academ Рейтинг: Цена: 10613.00 р. Наличие на складе: Поставка под заказ.
Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.
Автор: С.Aggarwal Название: Data Mining: The Textbook ISBN: 3319141414 ISBN-13(EAN): 9783319141411 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Поставка под заказ.
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru