Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning: ECML 2002, Tapio Elomaa; Heikki Mannila; Hannu Toivonen


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Tapio Elomaa; Heikki Mannila; Hannu Toivonen
Название:  Machine Learning: ECML 2002
ISBN: 9783540440369
Издательство: Springer
Классификация:
ISBN-10: 3540440364
Обложка/Формат: Paperback
Страницы: 538
Вес: 0.76 кг.
Дата издания: 05.08.2002
Серия: Lecture Notes in Artificial Intelligence
Язык: English
Размер: 234 x 156 x 28
Основная тема: Computer Science
Подзаголовок: 13th European Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002. Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Constituting the preceedings of the 13th European Conference on Machine Learning, these papers cover topics such as: computational discovery; search strategies; classification; support vector machines; kernel methods; rule induction; linear learning; decision tree learning; and boosting.


Practical Machine Learning with H2O

Автор: Darren Cook
Название: Practical Machine Learning with H2O
ISBN: 149196460X ISBN-13(EAN): 9781491964606
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

Machine Learning: ECML 2004

Автор: Jean-Francois Boulicaut; Floriana Esposito; Fosca
Название: Machine Learning: ECML 2004
ISBN: 3540231056 ISBN-13(EAN): 9783540231059
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML-93

Автор: Pavel B. Brazdil
Название: Machine Learning: ECML-93
ISBN: 3540566023 ISBN-13(EAN): 9783540566021
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Contains the proceedings of the European Conference on Machine Learning (ECML-93). The aim of these conferences is to provide a platform for presenting the latest results in machine learning. This volume includes coverage of inductive logic programming.

Machine Learning: ECML-98

Автор: Claire Nedellec; Celine Rouveirol
Название: Machine Learning: ECML-98
ISBN: 3540644172 ISBN-13(EAN): 9783540644170
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The refereed proceedings of ECML-98, including 21 revised full papers and 25 short papers reporting on the work in progress together with two invited contributions. Applications of ML, inductive logic programming, relational learning, and instance-based learning are among the areas covered.

Machine Learning: ECML`97

Автор: Maarten van Someren; Gerhard Widmer
Название: Machine Learning: ECML`97
ISBN: 3540628584 ISBN-13(EAN): 9783540628583
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume presents 26 revised full papers, an abstract paper and two papers corresponding to the invited talks as well as descriptions from four satellite workshops. The volume covers the whole spectrum of current machine learning issues.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Scaling up Machine Learning

Автор: Bekkerman
Название: Scaling up Machine Learning
ISBN: 0521192242 ISBN-13(EAN): 9780521192248
Издательство: Cambridge Academ
Рейтинг:
Цена: 14731.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.

Machine Learning for Hackers

Автор: Conway Drew, White John Myles
Название: Machine Learning for Hackers
ISBN: 1449303714 ISBN-13(EAN): 9781449303716
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Quantum Machine Learning: What Quantum Computing Means to Data Mining

Автор: Wittek Peter
Название: Quantum Machine Learning: What Quantum Computing Means to Data Mining
ISBN: 0128100400 ISBN-13(EAN): 9780128100400
Издательство: Elsevier Science
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 12095.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.

Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments

Автор: Gerhard Wei?
Название: Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments
ISBN: 3540629343 ISBN-13(EAN): 9783540629344
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This report documents current and ongoing developments in the area of learning in distributed artificial intelligence systems. The interdisciplinary co-operation of researchers from DAI and machine learning has established an active area of research and development.

Knowledge Engineering, Machine Learning and Lattice Computing with Applications

Автор: Manuel Grana; Carlos Toro; Robert J. Howlett; Lakh
Название: Knowledge Engineering, Machine Learning and Lattice Computing with Applications
ISBN: 3642373429 ISBN-13(EAN): 9783642373428
Издательство: Springer
Рейтинг:
Цена: 6429.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 16th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2012, held in San Sebastian, Spain, in September 2012.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия