Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Darren Cook Название: Practical Machine Learning with H2O ISBN: 149196460X ISBN-13(EAN): 9781491964606 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
Автор: Brandewinder Mathias Название: Machine Learning Projects for .Net Developers ISBN: 1430267674 ISBN-13(EAN): 9781430267676 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Mitchell Название: Machine Learning ISBN: 0071154671 ISBN-13(EAN): 9780071154673 Издательство: McGraw-Hill Рейтинг: Цена: 10466.00 р. Наличие на складе: Поставка под заказ.
Описание: Covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. This book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.
Автор: Bekkerman Название: Scaling up Machine Learning ISBN: 0521192242 ISBN-13(EAN): 9780521192248 Издательство: Cambridge Academ Рейтинг: Цена: 14731.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Автор: Marsland Название: Machine Learning ISBN: 1466583282 ISBN-13(EAN): 9781466583283 Издательство: Taylor&Francis Рейтинг: Цена: 12095.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
Two new chapters on deep belief networks and Gaussian processes
Reorganization of the chapters to make a more natural flow of content
Revision of the support vector machine material, including a simple implementation for experiments
New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
Additional discussions of the Kalman and particle filters
Improved code, including better use of naming conventions in Python
Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.
Автор: Tapio Elomaa; Heikki Mannila; Hannu Toivonen Название: Machine Learning: ECML 2002 ISBN: 3540440364 ISBN-13(EAN): 9783540440369 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constituting the preceedings of the 13th European Conference on Machine Learning, these papers cover topics such as: computational discovery; search strategies; classification; support vector machines; kernel methods; rule induction; linear learning; decision tree learning; and boosting.
Автор: Claire Nedellec; Celine Rouveirol Название: Machine Learning: ECML-98 ISBN: 3540644172 ISBN-13(EAN): 9783540644170 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The refereed proceedings of ECML-98, including 21 revised full papers and 25 short papers reporting on the work in progress together with two invited contributions. Applications of ML, inductive logic programming, relational learning, and instance-based learning are among the areas covered.
Автор: Nada Lavra?; Stefan Wrobel Название: Machine Learning: ECML-95 ISBN: 3540592865 ISBN-13(EAN): 9783540592860 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: These proceedings of the Eighth European Conference on Machine Learning, held in Heraclion, Crete in April 1995, address such areas as machine learning, logic programming, planning reasoning and algorithmic issues.
Автор: Francesco Bergadano; Luc de Raedt Название: Machine Learning: ECML-94 ISBN: 3540578684 ISBN-13(EAN): 9783540578680 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Machine learning, one of the most important research areas of artificial intelligence, is concerned with the automation of learning processes. This volume of conference proceedings contains the most significant research results in the field, describing techniques, implementations and experiments.
Автор: Jean-Francois Boulicaut; Floriana Esposito; Fosca Название: Machine Learning: ECML 2004 ISBN: 3540231056 ISBN-13(EAN): 9783540231059 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The papers present a wealth of new results in the area and address all current issues in machine learning.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru