Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning: ECML-95, Nada Lavra?; Stefan Wrobel


Варианты приобретения
Цена: 10480.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Nada Lavra?; Stefan Wrobel
Название:  Machine Learning: ECML-95
ISBN: 9783540592860
Издательство: Springer
Классификация:
ISBN-10: 3540592865
Обложка/Формат: Paperback
Страницы: 376
Вес: 0.54 кг.
Дата издания: 05.04.1995
Серия: Lecture Notes in Artificial Intelligence
Язык: English
Размер: 234 x 156 x 20
Основная тема: Computer Science
Подзаголовок: 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25 - 27, 1995. Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: These proceedings of the Eighth European Conference on Machine Learning, held in Heraclion, Crete in April 1995, address such areas as machine learning, logic programming, planning reasoning and algorithmic issues.


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Practical Machine Learning with H2O

Автор: Darren Cook
Название: Practical Machine Learning with H2O
ISBN: 149196460X ISBN-13(EAN): 9781491964606
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

Machine Learning: ECML-94

Автор: Francesco Bergadano; Luc de Raedt
Название: Machine Learning: ECML-94
ISBN: 3540578684 ISBN-13(EAN): 9783540578680
Издательство: Springer
Рейтинг:
Цена: 12157.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning, one of the most important research areas of artificial intelligence, is concerned with the automation of learning processes. This volume of conference proceedings contains the most significant research results in the field, describing techniques, implementations and experiments.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Machine Learning: The New AI

Автор: Alpaydin Ethem
Название: Machine Learning: The New AI
ISBN: 0262529513 ISBN-13(EAN): 9780262529518
Издательство: MIT Press
Рейтинг:
Цена: 2700.00 р.
Наличие на складе: Нет в наличии.

Описание:

A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.

Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.

Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.

Machine Learning for Hackers

Автор: Conway Drew, White John Myles
Название: Machine Learning for Hackers
ISBN: 1449303714 ISBN-13(EAN): 9781449303716
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Machine Learning: ECML 2004

Автор: Jean-Francois Boulicaut; Floriana Esposito; Fosca
Название: Machine Learning: ECML 2004
ISBN: 3540231056 ISBN-13(EAN): 9783540231059
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The papers present a wealth of new results in the area and address all current issues in machine learning.

Machine Learning: ECML-93

Автор: Pavel B. Brazdil
Название: Machine Learning: ECML-93
ISBN: 3540566023 ISBN-13(EAN): 9783540566021
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Contains the proceedings of the European Conference on Machine Learning (ECML-93). The aim of these conferences is to provide a platform for presenting the latest results in machine learning. This volume includes coverage of inductive logic programming.

Machine Learning: ECML 2002

Автор: Tapio Elomaa; Heikki Mannila; Hannu Toivonen
Название: Machine Learning: ECML 2002
ISBN: 3540440364 ISBN-13(EAN): 9783540440369
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constituting the preceedings of the 13th European Conference on Machine Learning, these papers cover topics such as: computational discovery; search strategies; classification; support vector machines; kernel methods; rule induction; linear learning; decision tree learning; and boosting.

Machine Learning: ECML-98

Автор: Claire Nedellec; Celine Rouveirol
Название: Machine Learning: ECML-98
ISBN: 3540644172 ISBN-13(EAN): 9783540644170
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The refereed proceedings of ECML-98, including 21 revised full papers and 25 short papers reporting on the work in progress together with two invited contributions. Applications of ML, inductive logic programming, relational learning, and instance-based learning are among the areas covered.

Machine Learning: ECML`97

Автор: Maarten van Someren; Gerhard Widmer
Название: Machine Learning: ECML`97
ISBN: 3540628584 ISBN-13(EAN): 9783540628583
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume presents 26 revised full papers, an abstract paper and two papers corresponding to the invited talks as well as descriptions from four satellite workshops. The volume covers the whole spectrum of current machine learning issues.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия