Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Learning Robots, Andreas Birk; John Demiris


Варианты приобретения
Цена: 9781.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Andreas Birk; John Demiris
Название:  Learning Robots
ISBN: 9783540654803
Издательство: Springer
Классификация:


ISBN-10: 3540654801
Обложка/Формат: Paperback
Страницы: 194
Вес: 0.29 кг.
Дата издания: 18.12.1998
Серия: Lecture Notes in Artificial Intelligence
Язык: English
Размер: 234 x 156 x 11
Основная тема: Engineering
Подзаголовок: 6th European Workshop EWLR-6, Brighton, England, August 1-2, 1997 Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The interests that motivate the researchers in this eld range from fundamental research issues, such as how to constructively understand intelligence, to purely application o- ented work, such as the exploitation of learning techniques for industrial robotics.


Making Simple Robots: Exploring Cutting-Edge Robotics with Everyday Stuff

Автор: Ceceri Kathy
Название: Making Simple Robots: Exploring Cutting-Edge Robotics with Everyday Stuff
ISBN: 1457183633 ISBN-13(EAN): 9781457183638
Издательство: Wiley
Рейтинг:
Цена: 3166.00 р.
Наличие на складе: Поставка под заказ.

Описание: Making Simple Robots is based on one idea: Anybody can build a robot! That includes kids, English majors, school teachers, and grandparents.

Environment Learning for Indoor Mobile Robots

Автор: Juan Andrade Cetto; Alberto Sanfeliu
Название: Environment Learning for Indoor Mobile Robots
ISBN: 3642069312 ISBN-13(EAN): 9783642069314
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph covers theoretical aspects of simultaneous localization and map building for mobile robots. One of the most relevant topics covered in this monograph is the theoretical formalism of partial observability in SLAM.

Imitation and Social Learning in Robots, Humans and Animals

Автор: Nehaniv
Название: Imitation and Social Learning in Robots, Humans and Animals
ISBN: 0521108632 ISBN-13(EAN): 9780521108638
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book studies models and mechanisms of social matching behaviour and marks an important step towards the development of an interdisciplinary research field, consolidating and providing a valuable reference for the increasing number of researchers in the field of imitation and social learning in robots, humans and animals.

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

Автор: J?rgen Sturm
Название: Approaches to Probabilistic Model Learning for Mobile Manipulation Robots
ISBN: 3642371590 ISBN-13(EAN): 9783642371592
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents novel learning techniques that enable mobile platforms with one or more robotic manipulators to autonomously adapt to new or changing situations.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Автор: Todd Hester
Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
ISBN: 3319011677 ISBN-13(EAN): 9783319011677
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

Автор: J?rgen Sturm
Название: Approaches to Probabilistic Model Learning for Mobile Manipulation Robots
ISBN: 3642437141 ISBN-13(EAN): 9783642437144
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents novel learning techniques that enable mobile platforms with one or more robotic manipulators to autonomously adapt to new or changing situations.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Автор: Todd Hester
Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
ISBN: 3319375105 ISBN-13(EAN): 9783319375106
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.

From Motor Learning to Interaction Learning in Robots

Автор: Olivier Sigaud; Jan Peters
Название: From Motor Learning to Interaction Learning in Robots
ISBN: 3642051804 ISBN-13(EAN): 9783642051807
Издательство: Springer
Рейтинг:
Цена: 41787.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. It presents recent research in motor learning and interaction learning in robots.

Statistical Learning with Sparsity

Автор: Hastie
Название: Statistical Learning with Sparsity
ISBN: 1498712169 ISBN-13(EAN): 9781498712163
Издательство: Taylor&Francis
Рейтинг:
Цена: 16843.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.

From Motor Learning to Interaction Learning in Robots

Автор: Olivier Sigaud; Jan Peters
Название: From Motor Learning to Interaction Learning in Robots
ISBN: 3642262325 ISBN-13(EAN): 9783642262326
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is largely based on the successful workshop "From motor to interaction learning in robots" held at the IEEE/RSJ International Conference on Intelligent Robot Systems. It presents recent research in motor learning and interaction learning in robots.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия