Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Foundations of Bayesianism, D. Corfield; J. Williamson


Варианты приобретения
Цена: 27251.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: D. Corfield; J. Williamson
Название:  Foundations of Bayesianism
ISBN: 9789048159208
Издательство: Springer
Классификация:



ISBN-10: 9048159202
Обложка/Формат: Paperback
Страницы: 416
Вес: 0.61 кг.
Дата издания: 10.10.2011
Серия: Applied Logic Series
Язык: English
Размер: 231 x 155 x 23
Основная тема: Philosophy
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This is an authoritative collection of papers addressing the key challenges that face the Bayesian interpretation of probability today. The volume includes important criticisms of Bayesian reasoning and gives an insight into some of the points of disagreement amongst advocates of the Bayesian approach.


Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Bayesian Data Analysis, Third Edition

Автор: Gelman
Название: Bayesian Data Analysis, Third Edition
ISBN: 1439840954 ISBN-13(EAN): 9781439840955
Издательство: Taylor&Francis
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian and Frequentist Regression Methods

Автор: Wakefield
Название: Bayesian and Frequentist Regression Methods
ISBN: 1441909249 ISBN-13(EAN): 9781441909244
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis.

Bayesian Modeling Using WinBUGS

Автор: Ntzoufras, Ioannis
Название: Bayesian Modeling Using WinBUGS
ISBN: 047014114X ISBN-13(EAN): 9780470141144
Издательство: Wiley
Рейтинг:
Цена: 22168.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Detailed examples will be provided ranging from the very basic to the more advanced; they will also reflect realistic data sets (available from the Internet). An underlying emphasis is given to Generalized Linear Models (GLMs) that are familiar to most readers and researchers.

Bayesian Nonparametrics

Автор: Ghosh J.K., Ramamoorthi R.V.
Название: Bayesian Nonparametrics
ISBN: 0387955372 ISBN-13(EAN): 9780387955377
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian nonparametrics has grown tremendously in the last three decades, especially in the last few years. This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. While the book is of special interest to Bayesians, it will also appeal to statisticians in general because Bayesian nonparametrics offers a whole continuous spectrum of robust alternatives to purely parametric and purely nonparametric methods of classical statistics. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian nonparametrics. Though the emphasis of the book is on nonparametrics, there is a substantial chapter onJayanta Ghosh has been Director and Jawaharlal Nehru Professor at the Indian Statistical Institute and President of the International Statistical Institute. He is currently professor of statistics at Purdue University. He has been editor of Sankhya and served on the editorial boards of several journals including the Annals of Statistics. Apart from Bayesian analysis, his interests include asymptotics, stochastic modeling, high dimensional model selection, reliability and survival analysis and bioinformatics.R.V. Ramamoorthi is professor at the Department of Statistics and Probability at Michigan State University. He has published papers in the areas of sufficiency invariance, comparison of experiments, nonparametric survival analysis and Bayesian analysis. In addition to Bayesian nonparametrics, he is currently interested in Bayesian networks and graphical models. He is on the editorial board of Sankhya.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Introduction to Bayesian Econometrics

Автор: Greenberg
Название: Introduction to Bayesian Econometrics
ISBN: 1107015316 ISBN-13(EAN): 9781107015319
Издательство: Cambridge Academ
Рейтинг:
Цена: 8078.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook is an introduction to econometrics from the Bayesian viewpoint. New material includes a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The R programming language is also emphasized.

Bayesian Networks in Educational Assessment

Автор: Russell G. Almond; Robert J. Mislevy; Linda S. Ste
Название: Bayesian Networks in Educational Assessment
ISBN: 1493938282 ISBN-13(EAN): 9781493938285
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- An Introduction to Evidence-Centered Design.- Bayesian Probability and Statistics: a review.- Basic graph theory and graphical models.- Efficient calculations.- Some Example Networks.- Explanation and Test Construction.- Parameters for Bayesian Network Models.- Learning in Models with Fixed Structure.- Critiquing and Learning Model Structure.- An Illustrative Example.- The Conceptual Assessment Framework.- The Evidence Accumulation Process.- The Biomass Measurement Model.- The Future of Bayesian Networks in Educational Assessment.- Bayesian Network Resources.- References.

Bayesian Statistics in Action

Автор: Raffaele Argiento; Ettore Lanzarone; Isadora Anton
Название: Bayesian Statistics in Action
ISBN: 3319540831 ISBN-13(EAN): 9783319540832
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a selection of peer-reviewed contributions presented at the third Bayesian Young Statisticians Meeting, BAYSM 2016, Florence, Italy, June 19-21. students, and postdocs dealing with Bayesian statistics to connect with the Bayesian community at large, to exchange ideas, and to network with others working in the same field.

Innovations in Bayesian Networks

Автор: Dawn E. Holmes
Название: Innovations in Bayesian Networks
ISBN: 3540850651 ISBN-13(EAN): 9783540850656
Издательство: Springer
Рейтинг:
Цена: 28734.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume the editors have brought together contributions from some of the most prestigious researchers in this field.

Bayesian Nonparametric Data Analysis

Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T.
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319189670 ISBN-13(EAN): 9783319189673
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

Frontiers of Statistical Decision Making and Bayesian Analysis

Автор: Ming-Hui Chen; Peter M?ller; Dongchu Sun; Keying Y
Название: Frontiers of Statistical Decision Making and Bayesian Analysis
ISBN: 1489992014 ISBN-13(EAN): 9781489992017
Издательство: Springer
Рейтинг:
Цена: 14673.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As research into this subject diversifies, keeping up to date with the frontiers of the discipline becomes increasingly difficult. This book covers most of the current research challenges and opportunities, including Bayesian inference and nonparametric Bayes.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия