Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Adaptive Control with Recurrent High-order Neural Networks, George A. Rovithakis; Manolis A. Christodoulou


Варианты приобретения
Цена: 18167.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: George A. Rovithakis; Manolis A. Christodoulou
Название:  Adaptive Control with Recurrent High-order Neural Networks
ISBN: 9781447112013
Издательство: Springer
Классификация:





ISBN-10: 1447112016
Обложка/Формат: Paperback
Страницы: 196
Вес: 0.30 кг.
Дата издания: 13.12.2011
Серия: Advances in Industrial Control
Язык: English
Размер: 234 x 156 x 11
Основная тема: Computer Science
Подзаголовок: Theory and Industrial Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ...


Recurrent Neural Networks for Short-Term Load Forecasting

Автор: Filippo Maria Bianchi; Enrico Maiorino; Michael C.
Название: Recurrent Neural Networks for Short-Term Load Forecasting
ISBN: 3319703374 ISBN-13(EAN): 9783319703374
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series.

Learning with Recurrent Neural Networks

Автор: Barbara Hammer
Название: Learning with Recurrent Neural Networks
ISBN: 185233343X ISBN-13(EAN): 9781852333430
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Folding networks, a generalization of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data. Also, the architecture, the training mechanism, and several applications in different areas are explained in this work.

Convergence Analysis of Recurrent Neural Networks

Автор: Zhang Yi
Название: Convergence Analysis of Recurrent Neural Networks
ISBN: 1475738218 ISBN-13(EAN): 9781475738216
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Since the outstanding and pioneering research work of Hopfield on recurrent neural networks (RNNs) in the early 80s of the last century, neural networks have rekindled strong interests in scientists and researchers.

Competitively Inhibited Neural Networks for Adaptive Parameter Estimation

Автор: Michael Lemmon
Название: Competitively Inhibited Neural Networks for Adaptive Parameter Estimation
ISBN: 0792390865 ISBN-13(EAN): 9780792390862
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial Neural Networks have captured the interest of many researchers in the last five years. As with many young fields, neural network research has been largely empirical in nature, relyingstrongly on simulationstudies ofvarious network models. There is "good news" and "bad news" associated with theoretical research in neural networks.

Discrete-Time High Order Neural Control

Автор: Edgar N. Sanchez; Alma Y. Alan?s; Alexander G. Lou
Название: Discrete-Time High Order Neural Control
ISBN: 3642096956 ISBN-13(EAN): 9783642096952
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems;

Fuzzy Neural Networks for Real Time Control Applications

Автор: Erdal Kayacan
Название: Fuzzy Neural Networks for Real Time Control Applications
ISBN: 0128026871 ISBN-13(EAN): 9780128026878
Издательство: Elsevier Science
Рейтинг:
Цена: 12294.00 р.
Наличие на складе: Поставка под заказ.

Описание:

AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS

Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book

Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book.

A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis.

You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are:

- Gradient descent

- Levenberg-Marquardt

- Extended Kalman filter

In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced.

The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully.

A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems

Название: A Theory of Learning and Generalization: With Applications to Neural Networks and Control Systems
ISBN: 1849968675 ISBN-13(EAN): 9781849968676
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: How does a machine learn a new concept on the basis of examples? This second edition takes account of important new developments in the field. It also deals extensively with the theory of learning control systems, now comparably mature to learning of neural networks.

Neural Networks for Cooperative Control of Multiple Robot Arms

Автор: Shuai Li; Yinyan Zhang
Название: Neural Networks for Cooperative Control of Multiple Robot Arms
ISBN: 9811070369 ISBN-13(EAN): 9789811070365
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the first book to focus on solving cooperative control problems of multiple robot arms using different centralized or distributed neural network models, presenting methods and algorithms together with the corresponding theoretical analysis and simulated examples.

Intelligent Control Based on Flexible Neural Networks

Автор: M. Teshnehlab; Watanabe Kyoko
Название: Intelligent Control Based on Flexible Neural Networks
ISBN: 0792356837 ISBN-13(EAN): 9780792356837
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The use of flexible sigmoid functions makes artificial neural networks more versatile. This volume determines learning algorithms for sigmoid functions in several different learning modes using flexible structures of neural networks with new derivation algorithms. It is aimed at electrical, electronic, and mechanical control and systems engineers.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия