Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Intelligent Control Based on Flexible Neural Networks, M. Teshnehlab; Watanabe Kyoko


Варианты приобретения
Цена: 23757.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: M. Teshnehlab; Watanabe Kyoko
Название:  Intelligent Control Based on Flexible Neural Networks
ISBN: 9780792356837
Издательство: Springer
Классификация:


ISBN-10: 0792356837
Обложка/Формат: Hardcover
Страницы: 236
Вес: 0.50 кг.
Дата издания: 30.06.1999
Серия: Intelligent Systems, Control and Automation: Science and Engineering
Язык: English
Размер: 232 x 176 x 20
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The use of flexible sigmoid functions makes artificial neural networks more versatile. This volume determines learning algorithms for sigmoid functions in several different learning modes using flexible structures of neural networks with new derivation algorithms. It is aimed at electrical, electronic, and mechanical control and systems engineers.


Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Автор: Patricia Melin; Oscar Castillo; Janusz Kacprzyk
Название: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization
ISBN: 331917746X ISBN-13(EAN): 9783319177465
Издательство: Springer
Рейтинг:
Цена: 23508.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.

Design and Control of Intelligent Robotic Systems

Автор: Dikai Liu; Lingfeng Wang; Kay Chen Tan (Eds.)
Название: Design and Control of Intelligent Robotic Systems
ISBN: 3540899324 ISBN-13(EAN): 9783540899327
Издательство: Springer
Рейтинг:
Цена: 36570.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers.

Intelligent Control Based on Flexible Neural Networks

Автор: M. Teshnehlab; Watanabe Kyoko
Название: Intelligent Control Based on Flexible Neural Networks
ISBN: 9048152070 ISBN-13(EAN): 9789048152070
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: References . 57 Chapter 3 Flexible Neural Networks . 3 Flexible Bipolar Sigmoid Functions . 5 Examples . 3 Flexible Neural Network as an Indirect Controller . 5 Simulation Examples . 3 Computed Torque Control . 4 Self-tunig Computed Torque Control . 5 Simulation Examples . 3 Simulation Examples .

Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Автор: Patricia Melin; Oscar Castillo; Janusz Kacprzyk
Название: Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization
ISBN: 331936961X ISBN-13(EAN): 9783319369617
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.

Neural Networks for Cooperative Control of Multiple Robot Arms

Автор: Shuai Li; Yinyan Zhang
Название: Neural Networks for Cooperative Control of Multiple Robot Arms
ISBN: 9811070369 ISBN-13(EAN): 9789811070365
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is the first book to focus on solving cooperative control problems of multiple robot arms using different centralized or distributed neural network models, presenting methods and algorithms together with the corresponding theoretical analysis and simulated examples.

Artificial Neural Networks for Modelling and Control of Non-Linear Systems

Автор: Johan A.K. Suykens; Joos P.L. Vandewalle; B.L. de
Название: Artificial Neural Networks for Modelling and Control of Non-Linear Systems
ISBN: 144195158X ISBN-13(EAN): 9781441951588
Издательство: Springer
Рейтинг:
Цена: 19589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial neural networks possess several properties that make them particularly attractive for applications to modelling and control of complex non-linear systems. Topics include non-linear system identification, neural optimal control, top-down model based neural control design and stability analysis of neural control systems.

Neural Networks for Identification, Prediction and Control

Автор: Duc T. Pham; Xing Liu
Название: Neural Networks for Identification, Prediction and Control
ISBN: 1447132467 ISBN-13(EAN): 9781447132462
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In recent years, there has been a growing interest in applying neural networks to dynamic systems identification (modelling), prediction and control. The neural network types considered in detail are the muhilayer perceptron (MLP), the Elman and Jordan networks and the Group-Method-of-Data-Handling (GMDH) network.

Adaptive Control with Recurrent High-order Neural Networks

Автор: George A. Rovithakis; Manolis A. Christodoulou
Название: Adaptive Control with Recurrent High-order Neural Networks
ISBN: 1447112016 ISBN-13(EAN): 9781447112013
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ...

Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook

Автор: Norgaard M., Ravn O., Poulsen N.K., Hansen L.K.
Название: Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook
ISBN: 1852332271 ISBN-13(EAN): 9781852332273
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The technology of neural networks has attracted much attention in recent years. Their ability to learn nonlinear relationships is widely appreciated and is utilized in many different types of applications; modelling of dynamic systems, signal processing, and control system design being some of the most common. The theory of neural computing has matured considerably over the last decade and many problems of neural network design, training and evaluation have been resolved. This book provides a comprehensive introduction to the most popular class of neural network, the multilayer perceptron, and shows how it can be used for system identification and control. It aims to provide the reader with a sufficient theoretical background to understand the characteristics of different methods, to be aware of the pit-falls and to make proper decisions in all situations. The subjects treated include: System identification: multilayer perceptrons; how to conduct informative experiments; model structure selection; training methods; model validation; pruning algorithms. Control: direct inverse, internal model, feedforward, optimal and predictive control; feedback linearization and instantaneous-linearization-based controllers. Case studies: prediction of sunspot activity; modelling of a hydraulic actuator; control of a pneumatic servomechanism; water-level control in a conical tank. The book is very application-oriented and gives detailed and pragmatic recommendations that guide the user through the plethora of methods suggested in the literature. Furthermore, it attempts to introduce sound working procedures that can lead to efficient neural network solutions. This will make the book invaluable to the practitioner and as a textbook in courses with a significant hands-on component.

Fuzzy Neural Networks for Real Time Control Applications

Автор: Erdal Kayacan
Название: Fuzzy Neural Networks for Real Time Control Applications
ISBN: 0128026871 ISBN-13(EAN): 9780128026878
Издательство: Elsevier Science
Рейтинг:
Цена: 12294.00 р.
Наличие на складе: Поставка под заказ.

Описание:

AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS

Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book

Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book.

A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis.

You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are:

- Gradient descent

- Levenberg-Marquardt

- Extended Kalman filter

In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced.

The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully.

Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments

Автор: Minghui Zhu; Sonia Mart?nez
Название: Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments
ISBN: 3319190717 ISBN-13(EAN): 9783319190716
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With the goal of alleviating the paucity of knowledge about advanced dementia, and helping to improve the care and services that are increasingly needed for the growing numbers of people living with dementia-type diseases, this book provides evidence-based measurement scales for use by researchers and care providers who are seeking to improve our understanding of the final stages of this disease.

Intelligent Scheduling of Robotic Flexible Assembly Cells

Автор: Khalid Karam Abd
Название: Intelligent Scheduling of Robotic Flexible Assembly Cells
ISBN: 3319387367 ISBN-13(EAN): 9783319387369
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Background and Research Scope.- Literature Review and Research Objectives.- Development of an Intelligent Methodology for Scheduling RFAC.- Case Study 1: Application of the Developed Methodology Using Fuzzy Logic and Simulation.- Simulation Modelling and Analysis of Dynamic Scheduling in RFAC.- Development of an Optimization Approach for Dynamic Scheduling Problems in RFAC.- Case Study 2: Application of Hybrid Fuzzy MCDM Approach to Optimize Dynamic Scheduling in RFAC.- Conclusions and Recommendations for Further Work.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия