Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning Applications Using Python, 


Варианты приобретения
Цена: 10480.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания


Название:  Machine Learning Applications Using Python
ISBN: 9781484237861
Издательство: Springer
Классификация:




ISBN-10: 1484237862
Обложка/Формат: Paperback
Страницы: 379
Вес: 0.64 кг.
Дата издания: 13.12.2018
Язык: English
Издание: 1st ed.
Иллюстрации: 75 illustrations, color; 129 illustrations, black and white; vi, 314 p. 204 illus., 75 illus. in color.
Размер: 251 x 170 x 24
Читательская аудитория: General (us: trade)
Подзаголовок: Cases studies from healthcare, retail, and finance
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
Part 1: HealthcareChapter 1. Overview of machine learning in healthcare.Chapter 2. Key technological advancements in healthcare.Chapter 3. How to implement machine learning in healthcare.Chapter 4. Case studies on how organizations are changing the game in the market.Chapter 5. Pitfalls to avoid while implementing machine learning in healthcare.Chapter 6. Healthcare specific innovative Ideas for monetizing machine learning.
Part 2: Retail Chapter 7. Overview of machine learning in Retail.Chapter 8. Key technological advancements in Retail.Chapter 9. How to implement machine learning in Retail.Chapter 10. Case studies on how organizations are changing the game in the market. c. One discussion based case study. d. One practical case study with Python code.Chapter 11. Pitfalls to avoid while implementing machine learning in retail.Chapter 12. Retail specific innovative Ideas for monetizing machine learning.
Part 3: Finance Chapter 13. Overview of machine learning in Finance.Chapter 14. Key technological advancements in Finance.Chapter 15. How to implement machine learning in Finance.Chapter 16. Case studies on how organizations are changing the game in the market. e. One discussion based case study. f. One practical case study with Python code.Chapter 17. Pitfalls to avoid while implementing machine learning in Finance.Chapter 18. Finance specific innovative Ideas for monetizing machine learning.



The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Monetizing Machine Learning: Quickly Turn Python ML Ideas Into Web Applications on the Serverless Cloud

Автор: Amunategui Manuel, Roopaei Mehdi
Название: Monetizing Machine Learning: Quickly Turn Python ML Ideas Into Web Applications on the Serverless Cloud
ISBN: 1484238729 ISBN-13(EAN): 9781484238721
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book--Amazon, Microsoft, Google, and PythonAnywhere.

You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time.

Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book.

What You'll Learn

  • Extend your machine learning models using simple techniques to create compelling and interactive web dashboards
  • Leverage the Flask web framework for rapid prototyping of your Python models and ideas
  • Create dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more
  • Harness the power of TensorFlow by exporting saved models into web applications
  • Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored content
  • Create dashboards with paywalls to offer subscription-based access
  • Access API data such as Google Maps, OpenWeather, etc.
  • Apply different approaches to make sense of text data and return customized intelligence
  • Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back
  • Utilize the freemium offerings of Google Analytics and analyze the results
  • Take your ideas all the way to your customer's plate using the top serverless cloud providers

Who This Book Is For

Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level.

Introduction to Machine Learning with Applications in Information Security

Автор: Stamp
Название: Introduction to Machine Learning with Applications in Information Security
ISBN: 1138626783 ISBN-13(EAN): 9781138626782
Издательство: Taylor&Francis
Рейтинг:
Цена: 8726.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Advanced Machine Learning Technologies and Applications

Автор: Aboul Ella Hassanien; Mohamed Tolba; Ahmad Taher A
Название: Advanced Machine Learning Technologies and Applications
ISBN: 3319134604 ISBN-13(EAN): 9783319134604
Издательство: Springer
Рейтинг:
Цена: 11460.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Second International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2014, held in Cairo, Egypt, in November 2014. machine learning in watermarking/authentication and virtual machines;

Machine Learning: From Theory to Applications

Автор: Stephen J. Hanson; Werner Remmele; Ronald L. Rives
Название: Machine Learning: From Theory to Applications
ISBN: 3540564837 ISBN-13(EAN): 9783540564836
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Containing key research papers which have been produced recently by the Massachusetts Institute of Technology and the Siemens corporation, this volume explores the theory of machine learning, artificial intelligence and symbolic learning methods, and neural and collective computation.

Knowledge Engineering, Machine Learning and Lattice Computing with Applications

Автор: Manuel Grana; Carlos Toro; Robert J. Howlett; Lakh
Название: Knowledge Engineering, Machine Learning and Lattice Computing with Applications
ISBN: 3642373429 ISBN-13(EAN): 9783642373428
Издательство: Springer
Рейтинг:
Цена: 6429.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 16th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, KES 2012, held in San Sebastian, Spain, in September 2012.

The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018)

Автор: Hassanien
Название: The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018)
ISBN: 3319746898 ISBN-13(EAN): 9783319746890
Издательство: Springer
Рейтинг:
Цена: 55901.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the refereed proceedings of the third International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2018, held in Cairo, Egypt, on February 22-24, 2018, and organized by the Scientific Research Group in Egypt (SRGE).

Machine Learning and Its Applications

Автор: Georgios Paliouras; Vangelis Karkaletsis; Constant
Название: Machine Learning and Its Applications
ISBN: 3540424903 ISBN-13(EAN): 9783540424901
Издательство: Springer
Рейтинг:
Цена: 7400.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Examining the capabilities of machine learning methods and ideas on how they apply to real-world problems, this text assesses machine learning, then introduces applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, and user modelling.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия