Convex and Stochastic Optimization, Bonnans J Frederic
Автор: Oksendal Название: Stochastic Differential Equations ISBN: 3540047581 ISBN-13(EAN): 9783540047582 Издательство: Springer Рейтинг: Цена: 8223.00 р. Наличие на складе: Есть (1 шт.) Описание: Gives an introduction to the basic theory of stochastic calculus and its applications. This book offers examples in order to motivate and illustrate the theory and show its importance for many applications in for example economics, biology and physics.
Автор: Stephen Boyd Название: Convex Optimization ISBN: 0521833787 ISBN-13(EAN): 9780521833783 Издательство: Cambridge Academ Рейтинг: Цена: 17950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The focus of this book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Автор: Roman G. Strongin; Yaroslav D. Sergeyev Название: Global Optimization with Non-Convex Constraints ISBN: 0792364902 ISBN-13(EAN): 9780792364900 Издательство: Springer Рейтинг: Цена: 43184.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a new approach to global non-convex constrained optimization. Problem dimensionality is reduced via space-filling curves and to economize the search, constraint is accounted separately (penalties are not employed). The multicriteria case is also considered.
Автор: Borwein, Jonathan M. Lewis, Adrian S. (university Of Waterloo) Название: Convex analysis and nonlinear optimization ISBN: 1441921273 ISBN-13(EAN): 9781441921277 Издательство: Springer Рейтинг: Цена: 8378.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This new edition adds material on semismooth optimization, as well as several new proofs.
Автор: Aram Arutyunov, Valeri Obukhovskii Название: Convex and Set-Valued Analysis ISBN: 3110460289 ISBN-13(EAN): 9783110460285 Издательство: Walter de Gruyter Рейтинг: Цена: 11148.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: PrefacePart I: Convex analysisConvex sets and their propertiesThe convex hull of a set. The interior of convex setsThe affine hull of sets. The relative interior of convex setsSeparation theorems for convex setsConvex functionsClosedness, boundedness, continuity, and Lipschitz property of convex functionsConjugate functionsSupport functionsDifferentiability of convex functions and the subdifferentialConvex conesA little more about convex cones in infinite-dimensional spacesA problem of linear programmingMore about convex sets and convex hullsPart II: Set-valued analysisIntroduction to the theory of topological and metric spacesThe Hausdorff metric and the distance between setsSome fine properties of the Hausdorff metricSet-valued maps. Upper semicontinuous and lower semicontinuous set-valued mapsA base of topology of the spaceHc(X)Measurable set-valued maps. Measurable selections and measurable choice theoremsThe superposition set-valued operatorThe Michael theorem and continuous selections. Lipschitz selections. Single-valued approximationsSpecial selections of set-valued mapsDifferential inclusionsFixed points and coincidences of maps in metric spacesStability of coincidence points and properties of covering mapsTopological degree and fixed points of set-valued maps in Banach spacesExistence results for differential inclusions via the fixed point methodNotationBibliographyIndex
Автор: Brinkhuis Jan Название: Convex Analysis for Optimization: A Unified Approach ISBN: 3030418030 ISBN-13(EAN): 9783030418038 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It starts with the concept of convex sets, their primal description, constructions, topological properties and dual description, and then moves on to convex functions and the fundamental principles of convex optimization and their use in the complete analysis of convex optimization problems by means of a systematic four-step method.
Автор: Panos M. Pardalos; Antanas ?ilinskas; Julius ?ilin Название: Non-Convex Multi-Objective Optimization ISBN: 3319610058 ISBN-13(EAN): 9783319610054 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions.
Автор: Nisheeth K. Vishnoi Название: Algorithms for Convex Optimization ISBN: 1108482023 ISBN-13(EAN): 9781108482028 Издательство: Cambridge Academ Рейтинг: Цена: 13147.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Algorithms for Convex Optimization are the workhorses of data-driven, technological advancements in machine learning and artificial intelligence. This concise, modern guide to deriving these algorithms is self-contained and accessible to advanced students, practitioners, and researchers in computer science, operations research, and data science.
Название: Selected Applications of Convex Optimization ISBN: 3662463555 ISBN-13(EAN): 9783662463550 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on the applications of convex optimization and highlights several topics, including support vector machines, parameter estimation, norm approximation and regularization, semi-definite programming problems, convex relaxation, and geometric problems.
Автор: Joshua Adam Taylor Название: Convex Optimization of Power Systems ISBN: 1107076870 ISBN-13(EAN): 9781107076877 Издательство: Cambridge Academ Рейтинг: Цена: 12038.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This mathematically rigorous guide to convex optimization for power systems engineering includes convex models for a variety of real-world applications, and a selection of problems and practical examples. An invaluable resource for students and researchers from industry and academia in power systems, optimization, and control.
Автор: Juditsky Anatoli, Nemirovski Arkadi Название: Statistical Inference Via Convex Optimization ISBN: 0691197296 ISBN-13(EAN): 9780691197296 Издательство: Wiley Рейтинг: Цена: 13939.00 р. Наличие на складе: Поставка под заказ.
Описание:
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.
Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.
Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.
Автор: Boyd Stephen, Busseti Enzo, Diamond Steven Название: Multi-Period Trading Via Convex Optimization ISBN: 1680833286 ISBN-13(EAN): 9781680833287 Издательство: Неизвестно Рейтинг: Цена: 8966.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Multi-Period Trading via Convex Optimization collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru