Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Adaptive Resonance Theory in Social Media Data Clustering, Lei Meng; Ah-Hwee Tan; Donald C. Wunsch II


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lei Meng; Ah-Hwee Tan; Donald C. Wunsch II
Название:  Adaptive Resonance Theory in Social Media Data Clustering
ISBN: 9783030029845
Издательство: Springer
Классификация:





ISBN-10: 3030029840
Обложка/Формат: Hardcover
Страницы: 190
Вес: 0.48 кг.
Дата издания: 2019
Серия: Advanced Information and Knowledge Processing
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 34 illustrations, color; 19 illustrations, black and white; xv, 190 p. 53 illus., 34 illus. in color.
Размер: 234 x 156 x 13
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Roles, Methodologies, and Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:Basic knowledge (data & challenges) on social media analyticsClustering as a fundamental technique for unsupervised knowledge discovery and data miningA class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domainAdaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:How to process big streams of multimedia data?How to analyze social networks with heterogeneous data?How to understand a user’s interests by learning from online posts and behaviors?How to create a personalized search engine by automatically indexing and searching multimodal information resources? .
Дополнительное описание: Part 1: Theories.- Introduction.- Clustering and Extensions in the Social Media Domain .- Adaptive Resonance Theory (ART) for Social Media Analytics.- Part II: Applications.- Personalized Web Image Organization.- Socially-Enriched Multimedia Data Co-Clust



Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions

Автор: Zhengbing Hu, Yevgeniy V. Bodyanskiy, Oleksii Tyshchenko
Название: Self-Learning and Adaptive Algorithms for Business Applications: A Guide to Adaptive Neuro-Fuzzy Systems for Fuzzy Clustering Under Uncertainty Conditions
ISBN: 1838671749 ISBN-13(EAN): 9781838671747
Издательство: Emerald
Рейтинг:
Цена: 9349.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this guide designed for researchers and students of computer science, readers will find a resource for how to apply methods that work on real-life problems to their challenging applications, and a go-to work that makes fuzzy clustering issues and aspects clear.

Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3319978632 ISBN-13(EAN): 9783319978635
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Similarity-Based Clustering

Автор: Thomas Villmann; M. Biehl; Barbara Hammer; Michel
Название: Similarity-Based Clustering
ISBN: 3642018041 ISBN-13(EAN): 9783642018046
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Recent Developments and Biomedical Applications. .

Clustering High--Dimensional Data

Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove
Название: Clustering High--Dimensional Data
ISBN: 3662485761 ISBN-13(EAN): 9783662485767
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.

Web Mining: A Synergic Approach Resorting to Classification and Clustering

Автор: V.S. Kumbhar, K.S. Oza, R.K. Kamat
Название: Web Mining: A Synergic Approach Resorting to Classification and Clustering
ISBN: 8793379838 ISBN-13(EAN): 9788793379831
Издательство: Taylor&Francis
Рейтинг:
Цена: 11023.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Showcases an effective methodology for classification and clustering of web sites from a usability point of view. While the clustering and classification is accomplished by using an open source tool, WEKA, the basic dataset for the selected websites has been arrived at by using a free tool site-analyser. As a case study, several commercial websites are analysed.

Modern Technologies for Big Data Classification and Clustering

Автор: Seetha Hari, Murty M. Narasimha, Tripathy B. K.
Название: Modern Technologies for Big Data Classification and Clustering
ISBN: 1522528059 ISBN-13(EAN): 9781522528050
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 31324.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage.Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.Topics Covered:The many academic areas covered in this publication include, but are not limited to:Data visualizationDistributed Computing SystemsOpinion MiningPrivacy and securityRisk analysisSocial Network AnalysisText Data AnalyticsWeb Data Analytics

Clustering And Outlier Detection For Trajectory Stream Data

Автор: Jin Cheqing, Zhou Aoying, Mao Jiali
Название: Clustering And Outlier Detection For Trajectory Stream Data
ISBN: 9811210454 ISBN-13(EAN): 9789811210457
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

As mobile devices continue becoming a larger part of our lives, the development of location acquisition technologies to track moving objects have focused the minds of researchers on issues ranging from longitude and latitude coordinates, speed, direction, and timestamping, as part of parameters needed to calculate the positional information and locations of objects, in terms of time and position in the form of trajectory streams. Recently, recent advances have facilitated various urban applications such as smart transportation and mobile delivery services.

Unlike other books on spatial databases, mobile computing, data mining, or computing with spatial trajectories, this book is focused on smart transportation applications.

This book is a good reference for advanced undergraduates, graduate students, researchers, and system developers working on transportation systems.

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Isra?l C?sar Lerman
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447167910 ISBN-13(EAN): 9781447167914
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works

Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3030074196 ISBN-13(EAN): 9783030074197
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Heuristic Approach to Possibilistic Clustering: Algorithms a

Автор: Viattchenin Dmitri A
Название: Heuristic Approach to Possibilistic Clustering: Algorithms a
ISBN: 3642355358 ISBN-13(EAN): 9783642355356
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.

Fuzzy Collaborative Forecasting and Clustering

Автор: Tin-Chih Toly Chen; Katsuhiro Honda
Название: Fuzzy Collaborative Forecasting and Clustering
ISBN: 3030225739 ISBN-13(EAN): 9783030225735
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces the basic concepts of fuzzy collaborative forecasting and clustering, including its methodology, system architecture, and applications. It demonstrates how dealing with disparate data sources is becoming more and more popular due to the increasing spread of internet applications. The book proposes the concepts of collaborative computing intelligence and collaborative fuzzy modeling, and establishes several so-called fuzzy collaborative systems. It shows how technical constraints, security issues, and privacy considerations often limit access to some sources. This book is a valuable source of information for postgraduates, researchers and fuzzy control system developers, as it presents a very effective fuzzy approach that can deal with disparate data sources, big data, and multiple expert decision making.

A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications

Автор: Dmitri A. Viattchenin
Название: A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications
ISBN: 364244301X ISBN-13(EAN): 9783642443015
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a new approach to possibilistic clustering, the sought clustering structure of the set is based directly on the formal definition of fuzzy cluster and possibilistic memberships are determined directly from the values of the pairwise similarity of objects.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия