Описание: This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests.
Автор: Ghosal, Subhashis. Название: Fundamentals of Nonparametric Bayesian Inference ISBN: 0521878268 ISBN-13(EAN): 9780521878265 Издательство: Cambridge Academ Рейтинг: Цена: 12989.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.
Автор: Alexandre B. Tsybakov Название: Introduction to Nonparametric Estimation ISBN: 0387790519 ISBN-13(EAN): 9780387790510 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.
Описание: An overview of the asymptotic theory of optimal nonparametric tests is presented in this book. It covers a wide range of topics: Neyman-Pearson and LeCam's theories of optimal tests, the theories of empirical processes and kernel estimators with extensions of their applications to the asymptotic behavior of tests for distribution functions, densities and curves of the nonparametric models defining the distributions of point processes and diffusions. With many new test statistics developed for smooth curves, the reliance on kernel estimators with bias corrections and the weak convergence of the estimators are useful to prove the asymptotic properties of the tests, extending the coverage to semiparametric models. They include tests built from continuously observed processes and observations with cumulative intervals.
Автор: Yakov Nikitin Название: Asymptotic Efficiency of Nonparametric Tests ISBN: 0521470293 ISBN-13(EAN): 9780521470292 Издательство: Cambridge Academ Рейтинг: Цена: 18058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph is the first unified treatment of an indispensable technique for comparing statistical tests, especially in nonparametric statistics. It presents powerful new methods to evaluate explicitly different kinds of efficiencies. Many Russian results are published here for the first time in English.
Автор: Corder Название: Nonparametric Statistics - A Step-by-Step Approach 2e ISBN: 1118840313 ISBN-13(EAN): 9781118840313 Издательство: Wiley Рейтинг: Цена: 13139.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Hollander Myles Название: Nonparametric Statistical Methods ISBN: 0470387378 ISBN-13(EAN): 9780470387375 Издательство: Wiley Рейтинг: Цена: 17574.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by leading statisticians, this new edition has been completely updated to include additional modern topics and procedures, more real-world data sets, and more problems from real-life situations.
Автор: Patrice Bertail; Delphine Blanke; Pierre-Andr? Cor Название: Nonparametric Statistics ISBN: 3319969404 ISBN-13(EAN): 9783319969404 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.
Описание: Consists of 22 research papers in Probability and Statistics. This title includes topics such as nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory. It presents research in statistical theory.
Автор: Desu, M.M. , Raghavarao, D. Название: Nonparametric Statistical Methods For Complete and Censored Data ISBN: 0367394952 ISBN-13(EAN): 9780367394950 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics.
In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included.
Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists.
Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru