Описание: Consists of 22 research papers in Probability and Statistics. This title includes topics such as nonparametric inference, nonparametric curve fitting, linear model theory, Bayesian nonparametrics, change point problems, time series analysis and asymptotic theory. It presents research in statistical theory.
Автор: Corder Название: Nonparametric Statistics - A Step-by-Step Approach 2e ISBN: 1118840313 ISBN-13(EAN): 9781118840313 Издательство: Wiley Рейтинг: Цена: 13139.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Peter Sprent Название: Applied Nonparametric Statistical Methods ISBN: 940107044X ISBN-13(EAN): 9789401070447 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Understanding the rudiments helps one get better performance and makesdrivingsafer;appropriate gearchanges become a way to reduce engine stress, prolong engine life, improve fuel economy, minimize wear on brake linings.
Автор: Patrice Bertail; Delphine Blanke; Pierre-Andr? Cor Название: Nonparametric Statistics ISBN: 3319969404 ISBN-13(EAN): 9783319969404 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.
Автор: Hollander Myles Название: Nonparametric Statistical Methods ISBN: 0470387378 ISBN-13(EAN): 9780470387375 Издательство: Wiley Рейтинг: Цена: 17574.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by leading statisticians, this new edition has been completely updated to include additional modern topics and procedures, more real-world data sets, and more problems from real-life situations.
Автор: Ghosal, Subhashis. Название: Fundamentals of Nonparametric Bayesian Inference ISBN: 0521878268 ISBN-13(EAN): 9780521878265 Издательство: Cambridge Academ Рейтинг: Цена: 12989.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.
Описание: An overview of the asymptotic theory of optimal nonparametric tests is presented in this book. It covers a wide range of topics: Neyman-Pearson and LeCam's theories of optimal tests, the theories of empirical processes and kernel estimators with extensions of their applications to the asymptotic behavior of tests for distribution functions, densities and curves of the nonparametric models defining the distributions of point processes and diffusions. With many new test statistics developed for smooth curves, the reliance on kernel estimators with bias corrections and the weak convergence of the estimators are useful to prove the asymptotic properties of the tests, extending the coverage to semiparametric models. They include tests built from continuously observed processes and observations with cumulative intervals.
Автор: Alexandre B. Tsybakov Название: Introduction to Nonparametric Estimation ISBN: 0387790519 ISBN-13(EAN): 9780387790510 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.
Описание: Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone. Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume I summarize these results. The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented. In addition, a number of open problems is presented.
Описание: This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests.
Автор: Dieter Rasch; Moti Lal Tiku Название: Robustness of Statistical Methods and Nonparametric Statistics ISBN: 9400965303 ISBN-13(EAN): 9789400965300 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru