Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Low-Rank Approximation, Ivan Markovsky


Варианты приобретения
Цена: 19564.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ivan Markovsky
Название:  Low-Rank Approximation
ISBN: 9783030078171
Издательство: Springer
Классификация:








ISBN-10: 3030078175
Обложка/Формат: Soft cover
Страницы: 272
Вес: 0.60 кг.
Дата издания: 2019
Серия: Communications and Control Engineering
Язык: English
Иллюстрации: XIII, 272 p. 19 illus., 15 illus. in color.
Размер: Book (Paperback Initiative)
Основная тема: Engineering
Подзаголовок: Algorithms, Implementation, Applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory with a range of applications from systems and control theory to psychometrics being described. Special knowledge of the application fields is not required.
The second edition of /Low-Rank Approximation/ is a thoroughly edited and extensively rewritten revision. It contains new chapters and sections that introduce the topics of:
•variable projection for structured low-rank approximation;
•missing data estimation;
•data-driven filtering and control;
•stochastic model representation and identification;
•identification of polynomial time-invariant systems; and
•blind identification with deterministic input model.
The book is complemented by a software implementation of the methods presented, which makes the theory directly applicable in practice. In particular, all numerical examples in the book are included in demonstration files and can be reproduced by the reader. This gives hands-on experience with the theory and methods detailed. In addition, exercises and MATLAB^® /Octave examples will assist the reader quickly to assimilate the theory on a chapter-by-chapter basis.
“Each chapter is completed with a new section of exercises to which complete solutions are provided.”
Low-Rank Approximation (second edition) is a broad survey of the Low-Rank Approximation theory and applications of its field which will be of direct interest to researchers in system identification, control and systems theory, numerical linear algebra and optimization. The supplementary problems and solutions render it suitable for use in teaching graduate courses in those subjects as well.

Дополнительное описание: Chapter 1. Introduction.- Part I: Linear modeling problems.- Chapter 2. From data to models.- Chapter 3. Exact modelling.- Chapter 4. Approximate modelling.- Part II: Applications and generalizations.- Chapter 5. Applications.- Chapter 6. Data-driven ?lte



Low Rank Approximation

Автор: Ivan Markovsky
Название: Low Rank Approximation
ISBN: 1447158369 ISBN-13(EAN): 9781447158363
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book details the theory, algorithms, and applications of structured low-rank approximation, and presents efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel and Sylvester structured problems and more.

Rank-Deficient and Discrete Ill-Posed Problems

Автор: Hansen
Название: Rank-Deficient and Discrete Ill-Posed Problems
ISBN: 0898714036 ISBN-13(EAN): 9780898714036
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10659.00 р.
Наличие на складе: Нет в наличии.

Описание: Here is an overview of modern computational stabilization methods for linear inversion, with applications to a variety of problems in audio processing, medical imaging, seismology, astronomy, and other areas. Rank-deficient problems involve matrices that are exactly or nearly rank deficient. Such problems often arise in connection with noise suppression and other problems where the goal is to suppress unwanted disturbances of given measurements. Discrete ill-posed problems arise in connection with the numerical treatment of inverse problems, where one typically wants to compute information about interior properties using exterior measurements. Examples of inverse problems are image restoration and tomography, where one needs to improve blurred images or reconstruct pictures from raw data. This book describes new and existing numerical methods for the analysis and solution of rank-deficient and discrete ill-posed problems. The emphasis is on insight into the stabilizing properties of the algorithms and the efficiency and reliability of the computations.

Low-Rank and Sparse Modeling for Visual Analysis

Автор: Yun Fu
Название: Low-Rank and Sparse Modeling for Visual Analysis
ISBN: 3319119990 ISBN-13(EAN): 9783319119991
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data.

Low-Rank and Sparse Modeling for Visual Analysis

Автор: Yun Fu
Название: Low-Rank and Sparse Modeling for Visual Analysis
ISBN: 3319355678 ISBN-13(EAN): 9783319355672
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data.

Optimization on Low Rank Nonconvex Structures

Автор: Hiroshi Konno; Phan Thien Thach; Hoang Tuy
Название: Optimization on Low Rank Nonconvex Structures
ISBN: 0792343085 ISBN-13(EAN): 9780792343080
Издательство: Springer
Рейтинг:
Цена: 36197.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This work is devoted to global optimization problems with special structures. Most of these problems, though highly nonconvex, can be characterized by the property that they reduce to convex minimization problems when some of the variables are fixed.

Harmonic analysis on symmetric spaces-higher rank spaces, positive definite matrix space and generalizations

Автор: Terras, Audrey
Название: Harmonic analysis on symmetric spaces-higher rank spaces, positive definite matrix space and generalizations
ISBN: 1493934066 ISBN-13(EAN): 9781493934065
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations.

Learning to Rank for Information Retrieval

Автор: Tie-Yan Liu
Название: Learning to Rank for Information Retrieval
ISBN: 3642441246 ISBN-13(EAN): 9783642441240
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The author of this book first reviews the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms. Scientific theoretical soundness is combined with broad development and application experiences.

Dynamic Reconfiguration in Real-Time Systems

Автор: Weixun Wang; Prabhat Mishra; Sanjay Ranka
Название: Dynamic Reconfiguration in Real-Time Systems
ISBN: 148999078X ISBN-13(EAN): 9781489990785
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes the challenges in performing dynamic reconfigurations in real-time systems. It shows how to design efficient support architectures-including dynamic cache reconfiguration, hardware/software partitioning and task mapping and scheduling.

Scientific Data Ranking Methods,27

Автор: Manuela Pavan
Название: Scientific Data Ranking Methods,27
ISBN: 0444530207 ISBN-13(EAN): 9780444530202
Издательство: Elsevier Science
Рейтинг:
Цена: 26781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents basic mathematical aspects of the ranking methods using a didactical approach. This book covers a wide range of applications, from the environment and toxicology to DNA sequencing. It can be applied in several different fields, such as decision support, toxicology, EU priority lists of toxic chemicals, and environmental problems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия