Bayesian Optimization and Data Science, Francesco Archetti; Antonio Candelieri
Автор: Anjos Название: Handbook on Semidefinite, Conic and Polynomial Optimization ISBN: 1461407680 ISBN-13(EAN): 9781461407683 Издательство: Springer Рейтинг: Цена: 24456.00 р. 34937.00-30% Наличие на складе: Есть (1 шт.) Описание: Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts:Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization;Algorithms, documenting the directions of current algorithmic development;Software, providing an overview of the state-of-the-art;Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Автор: Emrouznejad Название: Big Data Optimization: Recent Developments and Challenges ISBN: 3319302639 ISBN-13(EAN): 9783319302638 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Themain objective of this book is to provide the necessary background to work withbig data by introducing some novel optimization algorithms and codes capable ofworking in the big data setting as well as introducing some applications in bigdata optimization for both academics and practitioners interested, and tobenefit society, industry, academia, and government. Presenting applications ina variety of industries, this book will be useful for the researchers aiming toanalyses large scale data. Several optimization algorithms for big dataincluding convergent parallel algorithms, limited memory bundle algorithm,diagonal bundle method, convergent parallel algorithms, network analytics, andmany more have been explored in this book.
Автор: Tsan-Ming Choi; Jianjun Gao; James H. Lambert; Chi Название: Optimization and Control for Systems in the Big-Data Era ISBN: 3319535161 ISBN-13(EAN): 9783319535166 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on optimal control and systems engineering in the big data era. Part I offers reviews on optimization and control theories, and Part II examines the optimization and control applications.
Автор: Panos Pardalos; Mario Pavone; Giovanni Maria Farin Название: Machine Learning, Optimization, and Big Data ISBN: 3319279254 ISBN-13(EAN): 9783319279251 Издательство: Springer Рейтинг: Цена: 7826.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This bookconstitutes revised selected papers from the First International Workshop onMachine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily,Italy, in July 2015. The 32papers presented in this volume were carefully reviewed and selected from 73submissions.
Автор: Miroslav Fiedler; Josef Nedoma; Jaroslav Ramik; Ji Название: Linear Optimization Problems with Inexact Data ISBN: 1441940944 ISBN-13(EAN): 9781441940940 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
Автор: Giuseppe Nicosia; Panos Pardalos; Renato Umeton; G Название: Machine Learning, Optimization, and Data Science ISBN: 3030375986 ISBN-13(EAN): 9783030375980 Издательство: Springer Рейтинг: Цена: 13695.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019.
Автор: Giuseppe Nicosia; Panos Pardalos; Giovanni Giuffri Название: Machine Learning, Optimization, and Data Science ISBN: 3030137082 ISBN-13(EAN): 9783030137083 Издательство: Springer Рейтинг: Цена: 11459.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018.The 46 full papers presented were carefully reviewed and selected from 126 submissions.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 179981193X ISBN-13(EAN): 9781799811930 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 27027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 1799811921 ISBN-13(EAN): 9781799811923 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35897.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: Tor Lattimore, Csaba Szepesvari Название: Bandit Algorithms ISBN: 1108486827 ISBN-13(EAN): 9781108486828 Издательство: Cambridge Academ Рейтинг: Цена: 6970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.
Описание: This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussing tensor network models for super-compressed higher-order representation of data/parameters and cost functions, together with an outline of their applications in machine learning and data analytics. A particular emphasis is on elucidating, through graphical illustrations, that by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volume of data/parameters, thereby alleviating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification, generalized eigenvalue decomposition and in the optimization of deep neural networks. The monograph focuses on tensor train (TT) and Hierarchical Tucker (HT) decompositions and their extensions, and on demonstrating the ability of tensor networks to provide scalable solutions for a variety of otherwise intractable large-scale optimization problems. Tensor Networks for Dimensionality Reduction and Large-scale Optimization Parts 1 and 2 can be used as stand-alone texts, or together as a comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions. See also: Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions. ISBN 978-1-68083-222-8
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru