Machine Learning for Medical Image Reconstruction, Florian Knoll; Andreas Maier; Daniel Rueckert; Jon
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data.- Deep Learning based Multi-Modal Registration for Retinal Imaging.- Automated Enriched Medical Concept Generation for Chest X-ray Images.
Автор: Zhou, Kevin Название: Deep Learning for Medical Image Analysis ISBN: 0128104082 ISBN-13(EAN): 9780128104088 Издательство: Elsevier Science Рейтинг: Цена: 16505.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas.
Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis.
Автор: Florian Knoll; Andreas Maier; Daniel Rueckert Название: Machine Learning for Medical Image Reconstruction ISBN: 3030001288 ISBN-13(EAN): 9783030001285 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the First International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018.The 17 full papers presented were carefully reviewed and selected from 21 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography, and deep learning for general image reconstruction.
Автор: Maria A. Zuluaga; Kanwal Bhatia; Bernhard Kainz; M Название: Reconstruction, Segmentation, and Analysis of Medical Images ISBN: 3319522795 ISBN-13(EAN): 9783319522791 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Registration.- Reconstruction.- Deep learning for heart segmentation.- Discrete optimization and probabilistic intensity modeling.- Atlas-based strategies.- Random forests.
Автор: Vivek Bannore Название: Iterative-Interpolation Super-Resolution Image Reconstruction ISBN: 3642101453 ISBN-13(EAN): 9783642101458 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a novel, hybrid, computationally-efficient reconstruction scheme for solving the problem of super-resolution restoration of high-resolution images from sequences of geometrically warped, aliased and under-sampled low-resolution images.
Автор: A.P. Korostelev; A.B. Tsybakov Название: Minimax Theory of Image Reconstruction ISBN: 0387940286 ISBN-13(EAN): 9780387940281 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: There exists a large variety of image reconstruction methods proposed by different authors (see e. We assume that the image belongs to a certain functional class and we find the image estimators that achieve the best order of accuracy for the worst images in the class.
Описание: This book constitutes the refereed joint proceedings of the First International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2018, the First International Workshop on Deep Learning Fails, DLF 2018, and the First International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 4 full MLCN papers, the 6 full DLF papers, and the 6 full iMIMIC papers included in this volume were carefully reviewed and selected. The MLCN contributions develop state-of-the-art machine learning methods such as spatio-temporal Gaussian process analysis, stochastic variational inference, and deep learning for applications in Alzheimer's disease diagnosis and multi-site neuroimaging data analysis; the DLF papers evaluate the strengths and weaknesses of DL and identify the main challenges in the current state of the art and future directions; the iMIMIC papers cover a large range of topics in the field of interpretability of machine learning in the context of medical image analysis.
Описание: This book constitutes the refereed proceedings of the First International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2019, and the 8th International Workshop on Clinical Image-Based Procedures, CLIP 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019.
Автор: Siddhartha Bhattacharyya; Debanjan Konar; Jan Plat Название: Hybrid Machine Intelligence for Medical Image Analysis ISBN: 9811389292 ISBN-13(EAN): 9789811389290 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks.
Автор: Om Prakash Verma; Sudipta Roy; Subhash Chandra Pan Название: Advancement of Machine Intelligence in Interactive Medical Image Analysis ISBN: 9811510997 ISBN-13(EAN): 9789811510991 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
Автор: Mousumi Gupta; Debanjan Konar; Siddhartha Bhattach Название: Computer Vision and Machine Intelligence in Medical Image Analysis ISBN: 9811387974 ISBN-13(EAN): 9789811387975 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book includes high-quality papers presented at the Symposium 2019, organised by Sikkim Manipal Institute of Technology (SMIT), in Sikkim from 26–27 February 2019. It discusses common research problems and challenges in medical image analysis, such as deep learning methods. It also discusses how these theories can be applied to a broad range of application areas, including lung and chest x-ray, breast CAD, microscopy and pathology. The studies included mainly focus on the detection of events from biomedical signals.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru