Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Texture Feature Extraction Techniques for Image Recognition, Jyotismita Chaki; Nilanjan Dey


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jyotismita Chaki; Nilanjan Dey
Название:  Texture Feature Extraction Techniques for Image Recognition
ISBN: 9789811508523
Издательство: Springer
Классификация:



ISBN-10: 9811508526
Обложка/Формат: Soft cover
Страницы: 100
Вес: 0.19 кг.
Дата издания: 2020
Серия: Springerbriefs in applied sciences and technology
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 12 illustrations, color; 63 illustrations, black and white; xiv, 100 p. 75 illus., 12 illus. in color.
Размер: 234 x 156 x 6
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based.


Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319884522 ISBN-13(EAN): 9783319884523
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319675877 ISBN-13(EAN): 9783319675879
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.

Computational Intelligence in Multi-Feature Visual Pattern Recognition

Автор: Pramod Kumar Pisharady; Prahlad Vadakkepat; Loh Ai
Название: Computational Intelligence in Multi-Feature Visual Pattern Recognition
ISBN: 9811011710 ISBN-13(EAN): 9789811011719
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds.

The Art of Feature Engineering: Essentials for Machine Learning

Автор: Pablo Duboue
Название: The Art of Feature Engineering: Essentials for Machine Learning
ISBN: 1108709389 ISBN-13(EAN): 9781108709385
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.

Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Feature Extraction

Автор: Isabelle Guyon; Steve Gunn; Masoud Nikravesh; Loft
Название: Feature Extraction
ISBN: 366251771X ISBN-13(EAN): 9783662517710
Издательство: Springer
Рейтинг:
Цена: 41787.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291656 ISBN-13(EAN): 9789813291652
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.

Real-time Speech and Music Classification by Large  Audio Feature Space Extraction

Автор: Florian Eyben
Название: Real-time Speech and Music Classification by Large Audio Feature Space Extraction
ISBN: 3319272985 ISBN-13(EAN): 9783319272986
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reports on an outstanding thesis thathas significantly advanced the state-of-the-art in the automated analysis andclassification of speech and music.

Image Feature Detectors and Descriptors

Автор: Ali Ismail Awad; Mahmoud Hassaballah
Название: Image Feature Detectors and Descriptors
ISBN: 3319288520 ISBN-13(EAN): 9783319288529
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This bookprovides readers with a selection of high-quality chapters that cover boththeoretical concepts and practical applications of image feature detectors anddescriptors. It serves as reference for researchers and practitioners byfeaturing survey chapters and research contributions on image feature detectorsand descriptors.

Image Texture Analysis

Автор: Hung Chih-Cheng
Название: Image Texture Analysis
ISBN: 3030137724 ISBN-13(EAN): 9783030137724
Издательство: Springer
Рейтинг:
Цена: 6567.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This useful textbook/reference presents an accessible primer on the fundamentals of image texture analysis, as well as an introduction to the K-views model for extracting and classifying image textures. describes the basics of image texture, texture features, and image texture classification and segmentation;


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия