The Art of Feature Engineering: Essentials for Machine Learning, Pablo Duboue
Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain Название: Advances in Feature Selection for Data and Pattern Recognition ISBN: 3319675877 ISBN-13(EAN): 9783319675879 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.
Автор: Basant Agarwal; Namita Mittal Название: Prominent Feature Extraction for Sentiment Analysis ISBN: 3319253417 ISBN-13(EAN): 9783319253411 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
1 Introduction
2 Literature Survey
3 Machine Learning Approach for Sentiment Analysis
4 Semantic Parsing using Dependency Rules
5 Sentiment Analysis using ConceptNet Ontology and Context
Information
6 Semantic Orientation based Approach for Sentiment Analysis
7 Conclusions and FutureWork
References
Glossary Index
Автор: Zheng Alice Название: Feature Engineering for Machine Learning ISBN: 1491953241 ISBN-13(EAN): 9781491953242 Издательство: Wiley Рейтинг: Цена: 8394.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you`ll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models.
Автор: Anthony Mihirana De Silva; Philip H. W. Leong Название: Grammar-Based Feature Generation for Time-Series Prediction ISBN: 9812874100 ISBN-13(EAN): 9789812874108 Издательство: Springer Рейтинг: Цена: 8489.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself.
Автор: Bol?n-Canedo Название: Recent Advances in Ensembles for Feature Selection ISBN: 331990079X ISBN-13(EAN): 9783319900797 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.
Автор: Sven Apel; Don Batory; Christian K?stner; Gunter S Название: Feature-Oriented Software Product Lines ISBN: 3662513005 ISBN-13(EAN): 9783662513002 Издательство: Springer Рейтинг: Цена: 9083.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on the development, maintenance, and implementation of product-line variability. It features a broad classification of tools and techniques for all stages of the development process and a detailed discussion of tradeoffs.
Автор: Jyotismita Chaki; Nilanjan Dey Название: Texture Feature Extraction Techniques for Image Recognition ISBN: 9811508526 ISBN-13(EAN): 9789811508523 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based.
Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain Название: Advances in Feature Selection for Data and Pattern Recognition ISBN: 3319884522 ISBN-13(EAN): 9783319884523 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Поставка под заказ.
Описание:
This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.
The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.
Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Автор: Ver?nica Bol?n-Canedo; Noelia S?nchez-Maro?o; Ampa Название: Feature Selection for High-Dimensional Data ISBN: 3319218573 ISBN-13(EAN): 9783319218571 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.
Автор: Isabelle Guyon; Steve Gunn; Masoud Nikravesh; Loft Название: Feature Extraction ISBN: 366251771X ISBN-13(EAN): 9783662517710 Издательство: Springer Рейтинг: Цена: 41787.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.
Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru