Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

The Art of Feature Engineering: Essentials for Machine Learning, Pablo Duboue


Варианты приобретения
Цена: 6970.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Pablo Duboue
Название:  The Art of Feature Engineering: Essentials for Machine Learning
Перевод названия: Пабло Дубуэ: Искусство конструирования признаков. Основы машинного обучения
ISBN: 9781108709385
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1108709389
Обложка/Формат: Paperback
Страницы: 283
Вес: 0.38 кг.
Дата издания: 30.06.2020
Серия: Computing & IT
Язык: English
Иллюстрации: Worked examples or exercises
Размер: 228 x 152 x 16
Читательская аудитория: Professional and scholarly
Ключевые слова: Machine learning,Artificial intelligence,Mathematical theory of computation,Data mining,Database programming,Software Engineering, COMPUTERS / Computer Vision & Pattern Recognition
Подзаголовок: Essentials for machine learning
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.


Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319675877 ISBN-13(EAN): 9783319675879
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Feature Engineering for Machine Learning

Автор: Zheng Alice
Название: Feature Engineering for Machine Learning
ISBN: 1491953241 ISBN-13(EAN): 9781491953242
Издательство: Wiley
Рейтинг:
Цена: 8394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you`ll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models.

Grammar-Based Feature Generation for Time-Series Prediction

Автор: Anthony Mihirana De Silva; Philip H. W. Leong
Название: Grammar-Based Feature Generation for Time-Series Prediction
ISBN: 9812874100 ISBN-13(EAN): 9789812874108
Издательство: Springer
Рейтинг:
Цена: 8489.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself.

Recent Advances in Ensembles for Feature Selection

Автор: Bol?n-Canedo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 331990079X ISBN-13(EAN): 9783319900797
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.

Feature-Oriented Software Product Lines

Автор: Sven Apel; Don Batory; Christian K?stner; Gunter S
Название: Feature-Oriented Software Product Lines
ISBN: 3662513005 ISBN-13(EAN): 9783662513002
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on the development, maintenance, and implementation of product-line variability. It features a broad classification of tools and techniques for all stages of the development process and a detailed discussion of tradeoffs.

Texture Feature Extraction Techniques for Image Recognition

Автор: Jyotismita Chaki; Nilanjan Dey
Название: Texture Feature Extraction Techniques for Image Recognition
ISBN: 9811508526 ISBN-13(EAN): 9789811508523
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based.

Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319884522 ISBN-13(EAN): 9783319884523
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Feature Selection for High-Dimensional Data

Автор: Ver?nica Bol?n-Canedo; Noelia S?nchez-Maro?o; Ampa
Название: Feature Selection for High-Dimensional Data
ISBN: 3319218573 ISBN-13(EAN): 9783319218571
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Feature Extraction

Автор: Isabelle Guyon; Steve Gunn; Masoud Nikravesh; Loft
Название: Feature Extraction
ISBN: 366251771X ISBN-13(EAN): 9783662517710
Издательство: Springer
Рейтинг:
Цена: 41787.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291656 ISBN-13(EAN): 9789813291652
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия