Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advances in Feature Selection for Data and Pattern Recognition, Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain


Варианты приобретения
Цена: 20962.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название:  Advances in Feature Selection for Data and Pattern Recognition
ISBN: 9783319884523
Издательство: Springer
Классификация:



ISBN-10: 3319884522
Обложка/Формат: Soft cover
Страницы: 328
Вес: 0.53 кг.
Дата издания: 2018
Серия: Intelligent Systems Reference Library
Язык: English
Издание: Softcover reprint of
Иллюстрации: 100 tables, color; 20 illustrations, color; 17 illustrations, black and white; xviii, 328 p. 37 illus., 20 illus. in color.
Размер: Book (Paperback Initiative)
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:
This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.

Дополнительное описание: An Introduction.- Attribute Selection Based on Reduction of Numerical Attribute During Discretization.- Improving Bagging Ensembles for Class Imbalanced Data by Active Learning.- Optimization of Decision Rules Relative to Length Based on Modi?ed Dynamic P



Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319675877 ISBN-13(EAN): 9783319675879
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.

Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Lakhmi C. Jain
Название: Feature Selection for Data and Pattern Recognition
ISBN: 3662508451 ISBN-13(EAN): 9783662508459
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.

Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Lakhmi C. Jain
Название: Feature Selection for Data and Pattern Recognition
ISBN: 3662456192 ISBN-13(EAN): 9783662456194
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.

The Art of Feature Engineering: Essentials for Machine Learning

Автор: Pablo Duboue
Название: The Art of Feature Engineering: Essentials for Machine Learning
ISBN: 1108709389 ISBN-13(EAN): 9781108709385
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.

Computational Intelligence in Multi-Feature Visual Pattern Recognition

Автор: Pramod Kumar Pisharady; Prahlad Vadakkepat; Loh Ai
Название: Computational Intelligence in Multi-Feature Visual Pattern Recognition
ISBN: 9811011710 ISBN-13(EAN): 9789811011719
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds.

Computational Intelligence in Multi-Feature Visual Pattern Recognition

Автор: Pramod Kumar Pisharady; Prahlad Vadakkepat; Loh Ai
Название: Computational Intelligence in Multi-Feature Visual Pattern Recognition
ISBN: 9812870555 ISBN-13(EAN): 9789812870551
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds.

Recent Advances in Ensembles for Feature Selection

Автор: Bol?n-Canedo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 331990079X ISBN-13(EAN): 9783319900797
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Feature Selection for High-Dimensional Data

Автор: Ver?nica Bol?n-Canedo; Noelia S?nchez-Maro?o; Ampa
Название: Feature Selection for High-Dimensional Data
ISBN: 3319218573 ISBN-13(EAN): 9783319218571
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Texture Feature Extraction Techniques for Image Recognition

Автор: Jyotismita Chaki; Nilanjan Dey
Название: Texture Feature Extraction Techniques for Image Recognition
ISBN: 9811508526 ISBN-13(EAN): 9789811508523
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based.

Feature Coding for Image Representation and Recognition

Автор: Yongzhen Huang; Tieniu Tan
Название: Feature Coding for Image Representation and Recognition
ISBN: 3662449994 ISBN-13(EAN): 9783662449998
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291656 ISBN-13(EAN): 9789813291652
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия