Описание: Edward F. Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately.
Название: Topics in modelling of clustered data ISBN: 0367396106 ISBN-13(EAN): 9780367396107 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and social science studies. It focuses on providing a comprehensive treatment of marginal, conditional, and random effects models using, among others, likelihood, pseudo-likelihood, and generalized estimating equations methods.
The authors motivate and illustrate all aspects of these models in a variety of real applications. They discuss several variations and extensions, including individual-level covariates and combined continuous and discrete outcomes. Flexible modelling with fractional and local polynomials, omnibus lack-of-fit tests, robustification against misspecification, exact, and bootstrap inferential procedures all receive extensive treatment. The applications discussed center primarily, but not exclusively, on developmental toxicity, which leads naturally to discussion of other methodologies, including risk assessment and dose-response modelling. Clearly written, Topics in Modelling of Clustered Data offers a practical, easily accessible survey of important modelling issues. Overview models give structure to a multitude of approaches, figures help readers visualize model characteristics, and a generous use of examples illustrates all aspects of the modelling process.
Автор: Jamie D. Riggs Название: Handbook for Applied Modeling: Non-Gaussian and Correlated Data ISBN: 1316601056 ISBN-13(EAN): 9781316601051 Издательство: Cambridge Academ Рейтинг: Цена: 6019.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designed for the applied practitioner, this book is a compact, entry-level guide to modeling and analyzing data that fail idealized assumptions. It explains and demonstrates core techniques, common pitfalls and data issues, and interpretation of model results, all with a focus on application, utility, and real-life data.
Автор: Timothy G. Gregoire; David R. Brillinger; Peter Di Название: Modelling Longitudinal and Spatially Correlated Data ISBN: 0387982167 ISBN-13(EAN): 9780387982168 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This refereed volume includes papers presented at a conference on modelling longitudinal and spatially correlated data. Many of the best researchers in the world have presented papers in an area with important applications to biostatistics and the environmental sciences.
Описание: This proceedings volume contains eight selected papers thatwere presented in the International Symposium in Statistics (ISS) 2015 OnAdvances in Parametric and Semi-parametric Analysis of Multivariate, TimeSeries, Spatial-temporal, and Familial-longitudinal Data, held in St. John`s,Canada from July 6 to 8, 2015.
Описание: Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru