Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Methodology in Robust and Nonparametric Statistics, Jureckov?, Jana , Sen, Pranab , Picek, Jan


Варианты приобретения
Цена: 9798.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jureckov?, Jana , Sen, Pranab , Picek, Jan
Название:  Methodology in Robust and Nonparametric Statistics
ISBN: 9780367381066
Издательство: Taylor&Francis
Классификация:
ISBN-10: 0367381060
Обложка/Формат: Paperback
Страницы: 412
Вес: 0.76 кг.
Дата издания: 27.09.2019
Язык: English
Размер: 231 x 155 x 25
Читательская аудитория: Tertiary education (us: college)
Основная тема: Statistical Theory & Methods
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algorithms, but to work actively with robust and nonparametric procedures, practitioners need to understand their background.





Explaining the underpinnings of robust methods and recent theoretical developments, Methodology in Robust and Nonparametric Statistics provides a profound mathematically rigorous explanation of the methodology of robust and nonparametric statistical procedures.





Thoroughly up-to-date, this book







  • Presents multivariate robust and nonparametric estimation with special emphasis on affine-equivariant procedures, followed by hypotheses testing and confidence sets


  • Keeps mathematical abstractions at bay while remaining largely theoretical


  • Provides a pool of basic mathematical tools used throughout the book in derivations of main results






The methodology presented, with due emphasis on asymptotics and interrelations, will pave the way for further developments on robust statistical procedures in more complex models. Using examples to illustrate the methods, the text highlights applications in the fields of biomedical science, bioinformatics, finance, and engineering. In addition, the authors provide exercises in the text.




Автор: Larry Wasserman
Название: All of Nonparametric Statistics
ISBN: 1441920447 ISBN-13(EAN): 9781441920447
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets.

All of Nonparametric Statistics

Автор: Wasserman
Название: All of Nonparametric Statistics
ISBN: 0387251456 ISBN-13(EAN): 9780387251455
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets.

Nonparametric Statistics - A Step-by-Step Approach  2e

Автор: Corder
Название: Nonparametric Statistics - A Step-by-Step Approach 2e
ISBN: 1118840313 ISBN-13(EAN): 9781118840313
Издательство: Wiley
Рейтинг:
Цена: 13139.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.

Introduction to Nonparametric Estimation

Автор: Alexandre B. Tsybakov
Название: Introduction to Nonparametric Estimation
ISBN: 0387790519 ISBN-13(EAN): 9780387790510
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.

Practical Nonparametric Statistics

Автор: Conover, W.J.
Название: Practical Nonparametric Statistics
ISBN: 0471160687 ISBN-13(EAN): 9780471160687
Издательство: Wiley
Рейтинг:
Цена: 36741.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This highly-regarded text serves as a quick reference book which offers clear, concise instructions on how and when to use the most popular nonparametric procedures.

Fundamentals of Nonparametric Bayesian Inference

Автор: Ghosal, Subhashis.
Название: Fundamentals of Nonparametric Bayesian Inference
ISBN: 0521878268 ISBN-13(EAN): 9780521878265
Издательство: Cambridge Academ
Рейтинг:
Цена: 12989.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Categorical and Nonparametric Data Analysis

Автор: Nussbaum E Michael
Название: Categorical and Nonparametric Data Analysis
ISBN: 1138787825 ISBN-13(EAN): 9781138787827
Издательство: Taylor&Francis
Рейтинг:
Цена: 12248.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.  Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.  Problems in each chapter help readers test their understanding of the material.  Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.  Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Bayesian Nonparametric Data Analysis

Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T.
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319189670 ISBN-13(EAN): 9783319189673
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

Nonparametric Statistics

Автор: Patrice Bertail; Delphine Blanke; Pierre-Andr? Cor
Название: Nonparametric Statistics
ISBN: 3319969404 ISBN-13(EAN): 9783319969404
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume presents the latest advances and trends in nonparametric statistics, and gathers selected and peer-reviewed contributions from the 3rd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Avignon, France on June 11-16, 2016. It covers a broad range of nonparametric statistical methods, from density estimation, survey sampling, resampling methods, kernel methods and extreme values, to statistical learning and classification, both in the standard i.i.d. case and for dependent data, including big data. The International Society for Nonparametric Statistics is uniquely global, and its international conferences are intended to foster the exchange of ideas and the latest advances among researchers from around the world, in cooperation with established statistical societies such as the Institute of Mathematical Statistics, the Bernoulli Society and the International Statistical Institute. The 3rd ISNPS conference in Avignon attracted more than 400 researchers from around the globe, and contributed to the further development and dissemination of nonparametric statistics knowledge.

Nonparametric Statistics: Theory And Methods

Автор: Deshpande Jayant V, Naik-nimbalkar Uttara, Dewan Isha
Название: Nonparametric Statistics: Theory And Methods
ISBN: 9814663573 ISBN-13(EAN): 9789814663571
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The number of books on Nonparametric Methodology is quite small as compared to, say, on Design of Experiments, Regression Analysis, Multivariate Analysis, etc.

Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data

Автор: Arboretti
Название: Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data
ISBN: 3319917390 ISBN-13(EAN): 9783319917399
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Chapter 1. The CUB models.- Chapter 2. Customer satisfaction heterogeneity.- Chapter 3. Ranking multivariate populations.- Chapter 4. Composite indicators and satisfaction profiles.- Chapter 5. Analyzing Survey Data Using Multivariate Rank-Based Inference

Missing and modified data in nonparametric estimation

Автор: Efromovich, Sam (ut Dallas, Richardson, Tx)
Название: Missing and modified data in nonparametric estimation
ISBN: 1138054887 ISBN-13(EAN): 9781138054882
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия