This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier-Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field.
The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.
The book is a valuable resource for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.
Описание: The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles.
This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.
The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.
The book is useful for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.
Описание: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension.
Описание: The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles.
PART 4. Hyperbolic Problems. David Iampietro, Frederic Daude, Pascal Galon, and Jean-Marc Herard, A Weighted Splitting Approach For Low-Mach Number Flows.-
Florence Hubert and Remi Tesson, Weno scheme for transport equation on unstructured grids with a DDFV approach.- M.J. Castro, J.M. Gallardo and A. Marquina, New types of Jacobian-free approximate Riemann solvers for hyperbolic systems.- Charles Demay, Christian Bourdarias, Benoıt de Laage de Meux, Stephane Gerbi and Jean-Marc Herard, A fractional step method to simulate mixed flows in pipes with a compressible two-layer model.- Theo Corot, A second order cell-centered scheme for Lagrangian hydrodynamics.- Clement Colas, Martin Ferrand, Jean-Marc Herard, Erwan Le Coupanec and Xavier Martin, An implicit integral formulation for the modeling of inviscid fluid flows in domains containing obstacles.- Christophe Chalons and Maxime Stauffert, A high-order Discontinuous Galerkin Lagrange Projection scheme for the barotropic Euler equations.- Christophe Chalons, Regis Duvigneau and Camilla Fiorini, Sensitivity analysis for the Euler equations in Lagrangian coordinates.- Jooyoung Hahn, Karol Mikula, Peter Frolkovic, and Branislav Basara, Semi-implicit level set method with inflow-based gradient in a polyhedron mesh.- Thierry Goudon, Julie Llobell and Sebastian Minjeaud, A staggered scheme for the Euler equations.- Christian Bourdarias, Stephane Gerbi and Ralph Lteif, A numerical scheme for the propagation of internal waves in an oceanographic model.- Hamza Boukili and Jean-Marc Herard, A splitting scheme for three-phase flow models.- M. J Castro, C. Escalante and T. Morales de Luna, Modelling and simulation of non-hydrostatic shallow flows.- Svetlana Tokareva and Eleuterio Toro, A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow.- Mohamed Boubekeur and Fayssal Benkhaldoun and Mohammed Seaid, GPU accelerated finite volume methods for three-dimensional shallow water flows.- Ward Melis, Thomas Rey and Giovanni Samaey, Projective integration for nonlinear BGK kinetic equations.- Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro, Asymptotic preserving property of a semi-implicit method.- Sebastien Boyaval, A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids.- David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret, Palindromic Discontinuous Galerkin Method.- M. Lukacova-Medvid'ova, J. Rosemeier, P. Spichtinger and B. Wiebe, IMEX finite volume methods for cloud simulation.- Raimund Burger and Ilja Kroker, Hybrid stochastic Galerkin finite volumes for the diffusively corrected Lighthill-Whitham-Richards traffic model.- Hamed Zakerzadeh, The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force.- Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel, Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force.- N. Aıssiouene, M-O. Bristeau, E. Godlewski, A. Mangeney, C. Pares and J. Sainte-Marie, Application of a combined finite element - finite volume method to a 2D non-hydrostatic shallow water problem.- Emanuela Abbate, Angelo Iollo and Gabriella Puppo, A relaxation scheme for the simulation of low Mach number flows.- Stefan Vater, Nicole Beisiegel and Jorn Behrens, Comparison of wetting and drying between a RKDG2 method and classical FV based second-order hydrostatic reconstruction.- Anja Jeschke, Stefan Vater and J]orn Behrens, A Discontinuous Galerkin Method for Non-Hydrostatic Shallow Water Flows.- Remi Abgrall and Paola Bacigaluppi, Design of a Second-Order Fully Explicit Residual Distribution Scheme for Compressible Multiphase Flows.- Martin Campos Pinto, An Unstructured Forward-Backward Lagrangian Scheme for Transport Problems.- Nicole Goutal, Minh-Hoang Le and Philippe Ung, A Godunov-type scheme for Shallow Water equations dedicated to simulations of overland flows on stepped slop
Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.
Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru