Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Model Selection and Error Estimation in a Nutshell, Oneto Luca


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Oneto Luca
Название:  Model Selection and Error Estimation in a Nutshell
ISBN: 9783030243616
Издательство: Springer
Классификация:


ISBN-10: 3030243613
Обложка/Формат: Paperback
Страницы: 132
Вес: 0.22 кг.
Дата издания: 14.08.2020
Серия: Modeling and optimization in science and technologies
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 100 tables, color; 62 illustrations, black and white; xiii, 132 p. 62 illus.
Размер: 23.39 x 15.60 x 0.81 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data.


Universal Coding and Order Identification by Model Selection Methods

Автор: ?lisabeth Gassiat
Название: Universal Coding and Order Identification by Model Selection Methods
ISBN: 3030071677 ISBN-13(EAN): 9783030071677
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book is divided into four chapters, the first of which introduces readers to lossless coding, provides an intrinsic lower bound on the codeword length in terms of Shannon`s entropy, and presents some coding methods that can achieve this lower bound, provided the source distribution is known.

Model Selection and Error Estimation in a Nutshell

Автор: Luca Oneto
Название: Model Selection and Error Estimation in a Nutshell
ISBN: 3030243583 ISBN-13(EAN): 9783030243586
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Нет в наличии.

Описание: How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research.

Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Автор: Timothy J. Barth; Herman Deconinck
Название: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics
ISBN: 3642078419 ISBN-13(EAN): 9783642078415
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation.

Methods of statistical model estimation

Автор: Hilbe, Joseph M. Robinson, Andrew P.
Название: Methods of statistical model estimation
ISBN: 0367380005 ISBN-13(EAN): 9780367380007
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting.

The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. The book starts with OLS regression and generalized linear models, building to two-parameter maximum likelihood models for both pooled and panel models. It then covers a random effects model estimated using the EM algorithm and concludes with a Bayesian Poisson model using Metropolis-Hastings sampling.

The book's coverage is innovative in several ways. First, the authors use executable computer code to present and connect the theoretical content. Therefore, code is written for clarity of exposition rather than stability or speed of execution. Second, the book focuses on the performance of statistical estimation and downplays algebraic niceties. In both senses, this book is written for people who wish to fit statistical models and understand them.

See Professor Hilbe discuss the book.

Econometric Model Selection

Автор: Antonio Aznar Grasa
Название: Econometric Model Selection
ISBN: 904814051X ISBN-13(EAN): 9789048140510
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes a new methodology for the selection of one (model) from among a set of alternative econometric models.

Universal Coding and Order Identification by Model Selection Methods

Автор: Gassiat
Название: Universal Coding and Order Identification by Model Selection Methods
ISBN: 3319962612 ISBN-13(EAN): 9783319962610
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1.​​Lossless Coding.- 2.Universal Coding on Finite Alphabets.- 3.Universal Coding on Infinite Alphabets.- 4.Model Order Estimation.- Notation.- Index.

Methods for estimation and inference in modern econometrics

Автор: Anatolyev, S.
Название: Methods for estimation and inference in modern econometrics
ISBN: 0367382660 ISBN-13(EAN): 9780367382667
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods for Estimation and Inference in Modern Econometrics provides a comprehensive introduction to a wide range of emerging topics, such as generalized empirical likelihood estimation and alternative asymptotics under drifting parameterizations, which have not been discussed in detail outside of highly technical research papers. The book also addresses several problems often arising in the analysis of economic data, including weak identification, model misspecification, and possible nonstationarity. The book's appendix provides a review of some basic concepts and results from linear algebra, probability theory, and statistics that are used throughout the book.

Topics covered include:

  • Well-established nonparametric and parametric approaches to estimation and conventional (asymptotic and bootstrap) frameworks for statistical inference
  • Estimation of models based on moment restrictions implied by economic theory, including various method-of-moments estimators for unconditional and conditional moment restriction models, and asymptotic theory for correctly specified and misspecified models
  • Non-conventional asymptotic tools that lead to improved finite sample inference, such as higher-order asymptotic analysis that allows for more accurate approximations via various asymptotic expansions, and asymptotic approximations based on drifting parameter sequences

Offering a unified approach to studying econometric problems, Methods for Estimation and Inference in Modern Econometrics links most of the existing estimation and inference methods in a general framework to help readers synthesize all aspects of modern econometric theory. Various theoretical exercises and suggested solutions are included to facilitate understanding.

Radiation Risk Estimation: Based on Measurement Error Models

Автор: Sergii Masiuk, Alexander Kukush, Sergiy Shklyar, M
Название: Radiation Risk Estimation: Based on Measurement Error Models
ISBN: 3110441802 ISBN-13(EAN): 9783110441802
Издательство: Walter de Gruyter
Рейтинг:
Цена: 22305.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

Contents:

Part I - Estimation in regression models with errors in covariates

Measurement error models

Linear models with classical error

Polynomial regression with known variance of classical error

Nonlinear and generalized linear models

Part II Radiation risk estimation under uncertainty in exposure doses

Overview of risk models realized in program package EPICURE

Estimation of radiation risk under classical or Berkson multiplicative error in exposure doses

Radiation risk estimation for persons exposed by radioiodine as a result of the Chornobyl accident

Elements of estimating equations theory

Consistency of efficient methods

Efficient SIMEX method as a combination of the SIMEX method and the corrected score method

Application of regression calibration in the model with additive error in exposure doses

Bayesian Model Selection and Statistical Modeling

Автор: Ando, Tomohiro
Название: Bayesian Model Selection and Statistical Modeling
ISBN: 0367383977 ISBN-13(EAN): 9780367383978
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Along with many practical applications, Bayesian Model Selection and Statistical Modeling presents an array of Bayesian inference and model selection procedures. It thoroughly explains the concepts, illustrates the derivations of various Bayesian model selection criteria through examples, and provides R code for implementation.





The author shows how to implement a variety of Bayesian inference using R and sampling methods, such as Markov chain Monte Carlo. He covers the different types of simulation-based Bayesian model selection criteria, including the numerical calculation of Bayes factors, the Bayesian predictive information criterion, and the deviance information criterion. He also provides a theoretical basis for the analysis of these criteria. In addition, the author discusses how Bayesian model averaging can simultaneously treat both model and parameter uncertainties.





Selecting and constructing the appropriate statistical model significantly affect the quality of results in decision making, forecasting, stochastic structure explorations, and other problems. Helping you choose the right Bayesian model, this book focuses on the framework for Bayesian model selection and includes practical examples of model selection criteria.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия