Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Model Selection and Error Estimation in a Nutshell, Luca Oneto


Варианты приобретения
Цена: 13974.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Luca Oneto
Название:  Model Selection and Error Estimation in a Nutshell
ISBN: 9783030243586
Издательство: Springer
Классификация:



ISBN-10: 3030243583
Обложка/Формат: Hardcover
Страницы: 132
Вес: 0.40 кг.
Дата издания: 2020
Серия: Modeling and Optimization in Science and Technologies
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 100 tables, color; 62 illustrations, black and white; xiii, 132 p. 62 illus.
Размер: 234 x 156 x 10
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80’s and includes the most recent results. It discusses open problems and outlines future directions for research.
Дополнительное описание: Introduction.- The “Five W” of MS & EE.- Preliminaries.- Resampling Methods.- Complexity-Based Methods.- Compression Bound.- Algorithmic Stability Theory.- PAC-Bayes Theory.- Di?erential Privacy Theory.- Conclusions & Further Readings.



Inverse problems and high-dimensional estimation

Автор: Eric Gautier and Pierre Alquier
Название: Inverse problems and high-dimensional estimation
ISBN: 3642199887 ISBN-13(EAN): 9783642199882
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The product of a high-flying summer school in Paris in 2009, this volume synthesises the state of the art on ill-posed statistical inverse problems and high-dimensional estimation and explores the ways these techniques can be applied to economics.

Radiation Risk Estimation: Based on Measurement Error Models

Автор: Sergii Masiuk, Alexander Kukush, Sergiy Shklyar, M
Название: Radiation Risk Estimation: Based on Measurement Error Models
ISBN: 3110441802 ISBN-13(EAN): 9783110441802
Издательство: Walter de Gruyter
Рейтинг:
Цена: 22305.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

Contents:

Part I - Estimation in regression models with errors in covariates

Measurement error models

Linear models with classical error

Polynomial regression with known variance of classical error

Nonlinear and generalized linear models

Part II Radiation risk estimation under uncertainty in exposure doses

Overview of risk models realized in program package EPICURE

Estimation of radiation risk under classical or Berkson multiplicative error in exposure doses

Radiation risk estimation for persons exposed by radioiodine as a result of the Chornobyl accident

Elements of estimating equations theory

Consistency of efficient methods

Efficient SIMEX method as a combination of the SIMEX method and the corrected score method

Application of regression calibration in the model with additive error in exposure doses

Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Автор: Timothy J. Barth; Herman Deconinck
Название: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics
ISBN: 3642078419 ISBN-13(EAN): 9783642078415
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation.

Universal Coding and Order Identification by Model Selection Methods

Автор: ?lisabeth Gassiat
Название: Universal Coding and Order Identification by Model Selection Methods
ISBN: 3030071677 ISBN-13(EAN): 9783030071677
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book is divided into four chapters, the first of which introduces readers to lossless coding, provides an intrinsic lower bound on the codeword length in terms of Shannon`s entropy, and presents some coding methods that can achieve this lower bound, provided the source distribution is known.

High-dimensional Covariance Estimation

Автор: Pourahmadi Mohsen
Название: High-dimensional Covariance Estimation
ISBN: 1118034295 ISBN-13(EAN): 9781118034293
Издательство: Wiley
Рейтинг:
Цена: 12664.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences.

Methods of statistical model estimation

Автор: Hilbe, Joseph M. Robinson, Andrew P.
Название: Methods of statistical model estimation
ISBN: 0367380005 ISBN-13(EAN): 9780367380007
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting.

The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. The book starts with OLS regression and generalized linear models, building to two-parameter maximum likelihood models for both pooled and panel models. It then covers a random effects model estimated using the EM algorithm and concludes with a Bayesian Poisson model using Metropolis-Hastings sampling.

The book's coverage is innovative in several ways. First, the authors use executable computer code to present and connect the theoretical content. Therefore, code is written for clarity of exposition rather than stability or speed of execution. Second, the book focuses on the performance of statistical estimation and downplays algebraic niceties. In both senses, this book is written for people who wish to fit statistical models and understand them.

See Professor Hilbe discuss the book.

Bayesian Model Selection and Statistical Modeling

Автор: Ando, Tomohiro
Название: Bayesian Model Selection and Statistical Modeling
ISBN: 0367383977 ISBN-13(EAN): 9780367383978
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Along with many practical applications, Bayesian Model Selection and Statistical Modeling presents an array of Bayesian inference and model selection procedures. It thoroughly explains the concepts, illustrates the derivations of various Bayesian model selection criteria through examples, and provides R code for implementation.





The author shows how to implement a variety of Bayesian inference using R and sampling methods, such as Markov chain Monte Carlo. He covers the different types of simulation-based Bayesian model selection criteria, including the numerical calculation of Bayes factors, the Bayesian predictive information criterion, and the deviance information criterion. He also provides a theoretical basis for the analysis of these criteria. In addition, the author discusses how Bayesian model averaging can simultaneously treat both model and parameter uncertainties.





Selecting and constructing the appropriate statistical model significantly affect the quality of results in decision making, forecasting, stochastic structure explorations, and other problems. Helping you choose the right Bayesian model, this book focuses on the framework for Bayesian model selection and includes practical examples of model selection criteria.

Introduction to Nonparametric Estimation

Автор: Alexandre B. Tsybakov
Название: Introduction to Nonparametric Estimation
ISBN: 0387790519 ISBN-13(EAN): 9780387790510
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.

Econometric Model Selection

Автор: Antonio Aznar Grasa
Название: Econometric Model Selection
ISBN: 904814051X ISBN-13(EAN): 9789048140510
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes a new methodology for the selection of one (model) from among a set of alternative econometric models.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия