Probabilistic Prognostics and Health Management of Energy Systems, Ekwaro-Osire Stephen, Gonзalves Aparecido Carlos, Alemayehu Fisseha M.
Автор: Kim Название: Prognostics and Health Management of Engineering Systems ISBN: 3319447408 ISBN-13(EAN): 9783319447407 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.
Among the many topics discussed in-depth are:
• Prognostics tutorials using least-squares
• Bayesian inference and parameter estimation
• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter
• Data-driven prognostics algorithms including Gaussian process regression and neural network
• Comparison of different prognostics algorithms
The authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.
Автор: Judea Pearl Название: Probabilistic Reasoning in Intelligent Systems, ISBN: 1558604790 ISBN-13(EAN): 9781558604797 Издательство: Elsevier Science Рейтинг: Цена: 9599.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.
The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.
Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
Автор: Enrique Castillo; Jose M. Gutierrez; Ali S. Hadi Название: Expert Systems and Probabilistic Network Models ISBN: 1461274818 ISBN-13(EAN): 9781461274810 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.
Автор: A.V. Gheorghe Название: Decision Processes in Dynamic Probabilistic Systems ISBN: 0792305442 ISBN-13(EAN): 9780792305446 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Et moi -...- si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais point aile: human race. It has put common sense back where it belongs. on the topmost shelf next Jules Verne (0 the dusty canister labelled 'discarded non- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com- puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Автор: Annabelle McIver; Charles Carroll Morgan Название: Abstraction, Refinement and Proof for Probabilistic Systems ISBN: 1441923128 ISBN-13(EAN): 9781441923127 Издательство: Springer Рейтинг: Цена: 23058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Illustrates by example the typical steps necessary in computer science to build a mathematical model of any programming paradigm .
Presents results of a large and integrated body of research in the area of `quantitative` program logics.
Описание: This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty.
Автор: Chao Hu; Byeng D. Youn; Pingfeng Wang Название: Engineering Design under Uncertainty and Health Prognostics ISBN: 3030064646 ISBN-13(EAN): 9783030064648 Издательство: Springer Рейтинг: Цена: 25155.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book presents state-of-the-art probabilistic methods for the reliability analysis and design of engineering products and processes. It seeks to facilitate practical application of probabilistic analysis and design by providing an authoritative, in-depth, and practical description of what probabilistic analysis and design is and how it can be implemented. The text is packed with many practical engineering examples (e.g., electric power transmission systems, aircraft power generating systems, and mechanical transmission systems) and exercise problems. It is an up-to-date, fully illustrated reference suitable for both undergraduate and graduate engineering students, researchers, and professional engineers who are interested in exploring the fundamentals, implementation, and applications of probabilistic analysis and design methods.
Introduction.- Power System Failures.- Reliability Models of Components.- Reliability Models of Small Systems.- Reliability Models of Large Systems.- Probabilistic Optimal Power Flow.- Conclusion.
Автор: Pierre Bessi?re; Christian Laugier; Roland Siegwar Название: Probabilistic Reasoning and Decision Making in Sensory-Motor Systems ISBN: 3642097847 ISBN-13(EAN): 9783642097843 Издательство: Springer Рейтинг: Цена: 26120.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The chapters contain a sizable segment of cognitive systems research in Europe. Contributions come from leading academic institutions within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS).
Автор: Ognjanovic Zoran Название: Probabilistic Extensions of Various Logical Systems ISBN: 3030529533 ISBN-13(EAN): 9783030529536 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The contributions in this book survey results on combinations of probabilistic and various other classical, temporal and justification logical systems. The aim is to provide a systematic overview and an accessible presentation of mathematical techniques used to obtain results on formalization, completeness, compactness and decidability.
The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.
Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru