Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Learning-Based Approaches for Sentiment Analysis, Agarwal Basant, Nayak Richi, Mittal Namita


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Agarwal Basant, Nayak Richi, Mittal Namita
Название:  Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9789811512186
Издательство: Springer
Классификация:




ISBN-10: 9811512183
Обложка/Формат: Paperback
Страницы: 319
Вес: 0.47 кг.
Дата издания: 25.01.2021
Язык: English
Размер: 23.39 x 15.60 x 1.75 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.


Sentiment Analysis and Knowledge Discovery in Contemporary Business

Автор: Dharmendra Singh Rajput, Ramjeevan Singh Thakur, S. Muzamil Basha
Название: Sentiment Analysis and Knowledge Discovery in Contemporary Business
ISBN: 1522549994 ISBN-13(EAN): 9781522549994
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 31324.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In the era of social connectedness, people are becoming increasingly enthusiastic about interacting, sharing, and collaborating through online collaborative media. However, conducting sentiment analysis on these platforms can be challenging, especially for business professionals who are using them to collect vital data.Sentiment Analysis and Knowledge Discovery in Contemporary Business is an essential reference source that discusses applications of sentiment analysis as well as data mining, machine learning algorithms, and big data streams in business environments. Featuring research on topics such as knowledge retrieval and knowledge updating, this book is ideally designed for business managers, academicians, business professionals, researchers, graduate-level students, and technology developers seeking current research on data collection and management to drive profit.

Opinion Mining and Sentiment Analysis

Автор: Bo Pang
Название: Opinion Mining and Sentiment Analysis
ISBN: 1601981503 ISBN-13(EAN): 9781601981509
Издательство: Marston Book Services
Рейтинг:
Цена: 16335.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems.

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Deep Learning-Based Approaches for Sentiment Analysis

Автор: Basant Agarwal, Richi Nayak
Название: Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9811512159 ISBN-13(EAN): 9789811512155
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.

Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis

Автор: Troussas Christos, Virvou Maria
Название: Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis
ISBN: 3030391299 ISBN-13(EAN): 9783030391294
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses three important, hot research issues: social networking-based learning, machine learning-based user modeling and sentiment analysis.

Sentiment Analysis for PTSD Signals

Автор: Vadim Kagan; Edward Rossini; Demetrios Sapounas
Название: Sentiment Analysis for PTSD Signals
ISBN: 1461430968 ISBN-13(EAN): 9781461430964
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction.- Introduction to PTSD Signals.- Data Source.- Text Analytics.- Scoring Engine.- System Overview.- Conclusions.

Sentiment Analysis in Social Networks

Автор: Pozzi, Federico
Название: Sentiment Analysis in Social Networks
ISBN: 0128044128 ISBN-13(EAN): 9780128044124
Издательство: Elsevier Science
Рейтинг:
Цена: 7409.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking.

Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature.

Further, this volume:

  • Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies
  • Provides insights into opinion spamming, reasoning, and social network analysis
  • Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences
  • Serves as a one-stop reference for the state-of-the-art in social media analytics
Sentiment Analysis in the Bio-Medical Domain

Автор: Ranjan Satapathy; Erik Cambria; Amir Hussain
Название: Sentiment Analysis in the Bio-Medical Domain
ISBN: 3319886096 ISBN-13(EAN): 9783319886091
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Sentiment analysis

Автор: Liu, Bing (university Of Illinois, Chicago)
Название: Sentiment analysis
ISBN: 1108486371 ISBN-13(EAN): 9781108486378
Издательство: Cambridge Academ
Рейтинг:
Цена: 10611.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sentiment analysis is the computational study of people`s opinions, emotions, and attitudes. This comprehensive introduction covers all core areas useful for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. The second edition includes new deep learning analysis methods.

Sentiment Analysis and Knowledge Discovery in Contemporary Business

Автор: Rajput Dharmendra Singh, Thakur Ramjeevan Singh, Basha S. Muzamil
Название: Sentiment Analysis and Knowledge Discovery in Contemporary Business
ISBN: 1522587853 ISBN-13(EAN): 9781522587859
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 20691.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discusses applications of sentiment analysis as well as data mining, machine learning algorithms, and big data streams in business environments. The book features research on a wide range of topics, including knowledge retrieval and knowledge updating.

Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis

Автор: Troussas Christos, Virvou Maria
Название: Advances in Social Networking-Based Learning: Machine Learning-Based User Modelling and Sentiment Analysis
ISBN: 3030391329 ISBN-13(EAN): 9783030391324
Издательство: Springer
Цена: 37618.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses three important, hot research issues: social networking-based learning, machine learning-based user modeling and sentiment analysis.

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Автор: Arindam Chaudhuri
Название: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
ISBN: 9811374732 ISBN-13(EAN): 9789811374739
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия