Описание: This book presents a unifiedapproach to studying the stability of both elliptic Cauchy problems and selectedinverse problems. Based on elementary Carleman inequalities, it establishesthree-ball inequalities, which are the key to deriving logarithmic stabilityestimates for elliptic Cauchy problems and are also useful in proving stabilityestimates for certain elliptic inverse problems. The book presents three inverseproblems, the first of which consists in determining the surface impedance ofan obstacle from the far field pattern. The second problem investigates the detectionof corrosion by electric measurement, while the third concerns thedetermination of an attenuation coefficient from internal data, which ismotivated by a problem encountered in biomedical imaging.
Автор: Randall J. LeVeque Название: Finite Volume Methods for Hyperbolic Problems ISBN: 0521009243 ISBN-13(EAN): 9780521009249 Издательство: Cambridge Academ Рейтинг: Цена: 11563.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Автор: Christian Klingenberg; Michael Westdickenberg Название: Theory, Numerics and Applications of Hyperbolic Problems I ISBN: 3030082725 ISBN-13(EAN): 9783030082727 Издательство: Springer Рейтинг: Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Автор: Christian Klingenberg; Michael Westdickenberg Название: Theory, Numerics and Applications of Hyperbolic Problems II ISBN: 3030062511 ISBN-13(EAN): 9783030062514 Издательство: Springer Рейтинг: Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
PART 4. Hyperbolic Problems. David Iampietro, Frederic Daude, Pascal Galon, and Jean-Marc Herard, A Weighted Splitting Approach For Low-Mach Number Flows.-
Florence Hubert and Remi Tesson, Weno scheme for transport equation on unstructured grids with a DDFV approach.- M.J. Castro, J.M. Gallardo and A. Marquina, New types of Jacobian-free approximate Riemann solvers for hyperbolic systems.- Charles Demay, Christian Bourdarias, Benoıt de Laage de Meux, Stephane Gerbi and Jean-Marc Herard, A fractional step method to simulate mixed flows in pipes with a compressible two-layer model.- Theo Corot, A second order cell-centered scheme for Lagrangian hydrodynamics.- Clement Colas, Martin Ferrand, Jean-Marc Herard, Erwan Le Coupanec and Xavier Martin, An implicit integral formulation for the modeling of inviscid fluid flows in domains containing obstacles.- Christophe Chalons and Maxime Stauffert, A high-order Discontinuous Galerkin Lagrange Projection scheme for the barotropic Euler equations.- Christophe Chalons, Regis Duvigneau and Camilla Fiorini, Sensitivity analysis for the Euler equations in Lagrangian coordinates.- Jooyoung Hahn, Karol Mikula, Peter Frolkovic, and Branislav Basara, Semi-implicit level set method with inflow-based gradient in a polyhedron mesh.- Thierry Goudon, Julie Llobell and Sebastian Minjeaud, A staggered scheme for the Euler equations.- Christian Bourdarias, Stephane Gerbi and Ralph Lteif, A numerical scheme for the propagation of internal waves in an oceanographic model.- Hamza Boukili and Jean-Marc Herard, A splitting scheme for three-phase flow models.- M. J Castro, C. Escalante and T. Morales de Luna, Modelling and simulation of non-hydrostatic shallow flows.- Svetlana Tokareva and Eleuterio Toro, A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow.- Mohamed Boubekeur and Fayssal Benkhaldoun and Mohammed Seaid, GPU accelerated finite volume methods for three-dimensional shallow water flows.- Ward Melis, Thomas Rey and Giovanni Samaey, Projective integration for nonlinear BGK kinetic equations.- Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro, Asymptotic preserving property of a semi-implicit method.- Sebastien Boyaval, A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids.- David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret, Palindromic Discontinuous Galerkin Method.- M. Lukacova-Medvid'ova, J. Rosemeier, P. Spichtinger and B. Wiebe, IMEX finite volume methods for cloud simulation.- Raimund Burger and Ilja Kroker, Hybrid stochastic Galerkin finite volumes for the diffusively corrected Lighthill-Whitham-Richards traffic model.- Hamed Zakerzadeh, The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force.- Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel, Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force.- N. Aıssiouene, M-O. Bristeau, E. Godlewski, A. Mangeney, C. Pares and J. Sainte-Marie, Application of a combined finite element - finite volume method to a 2D non-hydrostatic shallow water problem.- Emanuela Abbate, Angelo Iollo and Gabriella Puppo, A relaxation scheme for the simulation of low Mach number flows.- Stefan Vater, Nicole Beisiegel and Jorn Behrens, Comparison of wetting and drying between a RKDG2 method and classical FV based second-order hydrostatic reconstruction.- Anja Jeschke, Stefan Vater and J]orn Behrens, A Discontinuous Galerkin Method for Non-Hydrostatic Shallow Water Flows.- Remi Abgrall and Paola Bacigaluppi, Design of a Second-Order Fully Explicit Residual Distribution Scheme for Compressible Multiphase Flows.- Martin Campos Pinto, An Unstructured Forward-Backward Lagrangian Scheme for Transport Problems.- Nicole Goutal, Minh-Hoang Le and Philippe Ung, A Godunov-type scheme for Shallow Water equations dedicated to simulations of overland flows on stepped slop
Описание: This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions.
Описание: This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.
Описание: The articles in this volume reflect a subsequent development after a scientific meeting entitled Carleman Estimates and Control Theory, held in Cartona in September 1999. The 14 research-level articles, written by experts, focus on new results on Carleman estimates and their applications to uniqueness and controlla- bility of partial differential equations and systems. The main topics are unique continuation for elliptic PDEs and systems, con- trol theory and inverse problems. New results on strong uniqueness for second or higher order operators are explored in detail in several papers. In the area of control theory. the reader will find applications of Carleman estimates to stabiliza- tion, observability and exact control for the wave and the SchrOdinger equations. A final paper presents a challenging list of open problems on the topic of control- lability of linear and sernilinear heat equations. The papers contain exhaustive and essentially self-contained proofs directly ac- cessible to mathematicians, physicists, and graduate students with an elementary background in PDEs. Contributors are L. Aloui, M. Bellassoued, N. Burq, F. Colombini, B. Dehman, C. Grammatico, M. Khenissi, H. Koch, P. Le Borgne, N. Lerner, T. Nishitani. T. Okaji, K.D. Phung, R. Regbaoui, X. Saint Raymond, D. Tataru, and E. Zuazua.
Описание: Consists of 14 research articles that are an outgrowth of a scientific meeting held in Cortona on the subject of Carleman Estimates and Control Theory. This volume includes topics such as unique continuation for elliptic PDEs and systems, control theory and inverse problems. It is suitable for researchers and graduate students of pdes.
Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.
Автор: Heinrich Freist?hler; Gerald Warnecke Название: Hyperbolic Problems: Theory, Numerics, Applications ISBN: 3034895380 ISBN-13(EAN): 9783034895385 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Klingenberg Название: Theory, Numerics and Applications of Hyperbolic Problems II ISBN: 3319915479 ISBN-13(EAN): 9783319915470 Издательство: Springer Рейтинг: Цена: 32142.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru