Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning Fundamentals: A Concise Introduction, Hui Jiang


Варианты приобретения
Цена: 7128.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Hui Jiang
Название:  Machine Learning Fundamentals: A Concise Introduction
ISBN: 9781108940023
Издательство: Cambridge Academ
Классификация:

ISBN-10: 1108940021
Обложка/Формат: Paperback
Страницы: 418
Вес: 0.91 кг.
Дата издания: 25.11.2021
Серия: Computing & IT
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises; 19 halftones, color; 184 line drawings, color; worked examples or exercises; 19 halftones, color; 184 line drawings, color
Размер: 22.86 x 15.24 x 1.93 cm
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Information theory,Machine learning, COMPUTERS / Computer Vision & Pattern Recognition
Подзаголовок: A concise introduction
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used traditional methods plus recently popular deep learning methods.


Machine Learning Fundamentals: A Concise Introduction

Автор: Jiang Hui
Название: Machine Learning Fundamentals: A Concise Introduction
ISBN: 1108837042 ISBN-13(EAN): 9781108837040
Издательство: Cambridge University Press
Рейтинг:
Цена: 21691.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used traditional methods plus recently popular deep learning methods.

Introduction to machine learning with applications in information security

Автор: Stamp, Mark
Название: Introduction to machine learning with applications in information security
ISBN: 0367573059 ISBN-13(EAN): 9780367573058
Издательство: Taylor&Francis
Рейтинг:
Цена: 6430.00 р.
Наличие на складе: Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Introduction to Statistical Machine Learning

Автор: Masashi Sugiyama
Название: Introduction to Statistical Machine Learning
ISBN: 0128021217 ISBN-13(EAN): 9780128021217
Издательство: Elsevier Science
Рейтинг:
Цена: 17180.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.

Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.

  • Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus
  • Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning
  • Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
  • Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Introduction to Machine Learning with Applications in Information Security

Автор: Stamp
Название: Introduction to Machine Learning with Applications in Information Security
ISBN: 1138626783 ISBN-13(EAN): 9781138626782
Издательство: Taylor&Francis
Рейтинг:
Цена: 8726.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Machine Learning for Absolute Beginners: A Plain English Introduction

Автор: Theobald Oliver
Название: Machine Learning for Absolute Beginners: A Plain English Introduction
ISBN: 1549617214 ISBN-13(EAN): 9781549617218
Издательство: Неизвестно
Цена: 2980.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition.

Ready to crank up a virtual server and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?

Well, hold on there...

Before you embark on your epic journey into the world of machine learning, there is some theory and statistical principles to march through first.

But rather than spend $30-$50 USD on a dense long textbook, you may want to read this book first. As a clear and concise alternative to a textbook, this book provides a practical and high-level introduction to the practical components and statistical concepts found in machine learning.

Machine Learning for Absolute Beginners Second Edition has been written and designed for absolute beginners. This means plain-English explanations and no coding experience required. Where core algorithms are introduced, clear explanations and visual examples are added to make it easy and engaging to follow along at home.

This major new edition features many topics not covered in the First Edition, including Cross Validation, Data Scrubbing and Ensemble Modeling. Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition. Readers of the First Edition should not feel compelled to purchase this Second Edition.

Disclaimer: If you have passed the 'beginner' stage in your study of machine learning and are ready to tackle coding and deep learning, you would be well served with a long-format textbook. If, however, you are yet to reach that Lion King moment

Computational Bayesian Statistics: An Introduction

Автор: M. Antonia Amaral Turkman, Carlos Daniel Paulino, Peter Muller
Название: Computational Bayesian Statistics: An Introduction
ISBN: 1108481035 ISBN-13(EAN): 9781108481038
Издательство: Cambridge Academ
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.

Fundamentals of Machine Learning

Автор: Trappenberg Thomas
Название: Fundamentals of Machine Learning
ISBN: 0198828047 ISBN-13(EAN): 9780198828044
Издательство: Oxford Academ
Рейтинг:
Цена: 6572.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.

Introduction to multi-armed bandits

Автор: Slivkins, Aleksandrs
Название: Introduction to multi-armed bandits
ISBN: 168083620X ISBN-13(EAN): 9781680836202
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 13306.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.

Introduction to variational autoencoders

Автор: Kingma, Diederik P. Welling, Max
Название: Introduction to variational autoencoders
ISBN: 1680836226 ISBN-13(EAN): 9781680836226
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10118.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.

Introduction to Machine Learning

Автор: Alpaydin Ethem
Название: Introduction to Machine Learning
ISBN: 0262043793 ISBN-13(EAN): 9780262043793
Издательство: MIT Press
Рейтинг:
Цена: 14390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия