Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning Fundamentals: A Concise Introduction, Hui Jiang


Варианты приобретения
Цена: 7128.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-11-03
Ориентировочная дата поставки: Декабрь

Добавить в корзину
в Мои желания

Автор: Hui Jiang
Название:  Machine Learning Fundamentals: A Concise Introduction
ISBN: 9781108940023
Издательство: Cambridge Academ
Классификация:

ISBN-10: 1108940021
Обложка/Формат: Paperback
Страницы: 418
Вес: 0.91 кг.
Дата издания: 25.11.2021
Серия: Computing & IT
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises; 19 halftones, color; 184 line drawings, color; worked examples or exercises; 19 halftones, color; 184 line drawings, color
Размер: 22.86 x 15.24 x 1.93 cm
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Information theory,Machine learning, COMPUTERS / Computer Vision & Pattern Recognition
Подзаголовок: A concise introduction
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used traditional methods plus recently popular deep learning methods.


Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Machine Learning for Absolute Beginners: A Plain English Introduction

Автор: Theobald Oliver
Название: Machine Learning for Absolute Beginners: A Plain English Introduction
ISBN: 1549617214 ISBN-13(EAN): 9781549617218
Издательство: Неизвестно
Цена: 2980.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition.

Ready to crank up a virtual server and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?

Well, hold on there...

Before you embark on your epic journey into the world of machine learning, there is some theory and statistical principles to march through first.

But rather than spend $30-$50 USD on a dense long textbook, you may want to read this book first. As a clear and concise alternative to a textbook, this book provides a practical and high-level introduction to the practical components and statistical concepts found in machine learning.

Machine Learning for Absolute Beginners Second Edition has been written and designed for absolute beginners. This means plain-English explanations and no coding experience required. Where core algorithms are introduced, clear explanations and visual examples are added to make it easy and engaging to follow along at home.

This major new edition features many topics not covered in the First Edition, including Cross Validation, Data Scrubbing and Ensemble Modeling. Please note that this book is not a sequel to the First Edition, but rather a restructured and revamped version of the First Edition. Readers of the First Edition should not feel compelled to purchase this Second Edition.

Disclaimer: If you have passed the 'beginner' stage in your study of machine learning and are ready to tackle coding and deep learning, you would be well served with a long-format textbook. If, however, you are yet to reach that Lion King moment

Computational Bayesian Statistics: An Introduction

Автор: M. Antonia Amaral Turkman, Carlos Daniel Paulino, Peter Muller
Название: Computational Bayesian Statistics: An Introduction
ISBN: 1108481035 ISBN-13(EAN): 9781108481038
Издательство: Cambridge Academ
Рейтинг:
Цена: 18058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.

Fundamentals of Machine Learning

Автор: Trappenberg Thomas
Название: Fundamentals of Machine Learning
ISBN: 0198828047 ISBN-13(EAN): 9780198828044
Издательство: Oxford Academ
Рейтинг:
Цена: 6968.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.

Introduction to multi-armed bandits

Автор: Slivkins, Aleksandrs
Название: Introduction to multi-armed bandits
ISBN: 168083620X ISBN-13(EAN): 9781680836202
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 13306.00 р.
Наличие на складе: Поставка под заказ.

Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.

Introduction to variational autoencoders

Автор: Kingma, Diederik P. Welling, Max
Название: Introduction to variational autoencoders
ISBN: 1680836226 ISBN-13(EAN): 9781680836226
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10118.00 р.
Наличие на складе: Поставка под заказ.

Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.

Introduction to Machine Learning

Автор: Alpaydin Ethem
Название: Introduction to Machine Learning
ISBN: 0262043793 ISBN-13(EAN): 9780262043793
Издательство: MIT Press
Рейтинг:
Цена: 14390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.

The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.

An Introduction to Machine Learning

Автор: Gopinath Rebala; Ajay Ravi; Sanjay Churiwala
Название: An Introduction to Machine Learning
ISBN: 3030157288 ISBN-13(EAN): 9783030157289
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic;Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning;Not tied to any specific software language or hardware implementation.

Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning

Автор: Quaintance Jocelyn, Gallier Jean H
Название: Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning
ISBN: 9811216568 ISBN-13(EAN): 9789811216565
Издательство: World Scientific Publishing
Рейтинг:
Цена: 28512.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.

A Hands-On Introduction to Data Science

Автор: Chirag Shah
Название: A Hands-On Introduction to Data Science
ISBN: 1108472443 ISBN-13(EAN): 9781108472449
Издательство: Cambridge Academ
Рейтинг:
Цена: 7286.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.

Introduction to Machine Learning and Bioinformatics

Автор: Mitra, Sushmita , Datta, Sujay , Perkins, Theodo
Название: Introduction to Machine Learning and Bioinformatics
ISBN: 0367387239 ISBN-13(EAN): 9780367387235
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Lucidly Integrates Current Activities

Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.

Examines Connections between Machine Learning & Bioinformatics

The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.

Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems

Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments.

Machine Learning Fundamentals: A Concise Introduction

Автор: Jiang Hui
Название: Machine Learning Fundamentals: A Concise Introduction
ISBN: 1108837042 ISBN-13(EAN): 9781108837040
Издательство: Cambridge University Press
Рейтинг:
Цена: 21691.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This lucid and coherent introduction to supervised machine learning presents core concepts in a concise, logical and easy-to-follow way for readers with some mathematical preparation but no prior exposure to machine learning. Coverage includes widely used traditional methods plus recently popular deep learning methods.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия