Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

An Introduction to Bayesian Inference, Methods and Computation, Heard Nick


Варианты приобретения
Цена: 9083.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Heard Nick
Название:  An Introduction to Bayesian Inference, Methods and Computation
ISBN: 9783030828073
Издательство: Springer
Классификация:


ISBN-10: 3030828077
Обложка/Формат: Hardcover
Страницы: 140
Вес: 0.44 кг.
Дата издания: 31.10.2021
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 70 illustrations, color; 12 illustrations, black and white; xii, 169 p. 82 illus., 70 illus. in color.; 70 illustrations, color; 12 illustrations, bla
Размер: 23.39 x 15.60 x 1.27 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models.


Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Introduction to Probability, Second Edition

Автор: Joseph K. Blitzstein, Jessica Hwang
Название: Introduction to Probability, Second Edition
ISBN: 1138369918 ISBN-13(EAN): 9781138369917
Издательство: Taylor&Francis
Рейтинг:
Цена: 11176.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.

Multivariate Algorithms and Information-Based Complexity

Автор: Fred J. Hickernell, Peter Kritzer
Название: Multivariate Algorithms and Information-Based Complexity
ISBN: 3110633116 ISBN-13(EAN): 9783110633115
Издательство: Walter de Gruyter
Цена: 19330.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The series is devoted to the publication of high-level monographs, surveys and proceedings which cover the whole spectrum of computational and applied mathematics.

The books of this series are addressed to both specialists and advanced students.

Interested authors may submit book proposals to the Managing Editor or to any member of the Editorial Board.

Managing Editor
Ulrich Langer, RICAM, Linz, Austria; Johannes Kepler University Linz, Austria

Editorial Board
Hansjorg Albrecher, University of Lausanne, Switzerland
Ronald H. W. Hoppe, University of Houston, USA
Karl Kunisch, RICAM, Linz, Austria; University of Graz, Austria
Harald Niederreiter, RICAM, Linz, Austria
Otmar Scherzer, RICAM, Linz, Austria; University of Vienna, Austria
Christian Schmeiser, University of Vienna, Austria

Introduction to Bayesian Methods in Ecology and Natural Resources

Автор: Green Edwin J., Finley Andrew O., Strawderman William E.
Название: Introduction to Bayesian Methods in Ecology and Natural Resources
ISBN: 3030607496 ISBN-13(EAN): 9783030607494
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents modern Bayesian analysis in a format that is accessible to researchers in the fields of ecology, wildlife biology, and natural resource management.

Modeling and Reasoning with Bayesian Networks

Автор: Darwiche
Название: Modeling and Reasoning with Bayesian Networks
ISBN: 1107678420 ISBN-13(EAN): 9781107678422
Издательство: Cambridge Academ
Рейтинг:
Цена: 9821.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis.

Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.

Название: Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.
ISBN: 146127074X ISBN-13(EAN): 9781461270744
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.

Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Автор: Polpo
Название: Bayesian Inference and Maximum Entropy Methods in Science and Engineering
ISBN: 3319911422 ISBN-13(EAN): 9783319911427
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in Sao Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community.

Bayesian Claims Reserving Methods in Non-life Insurance with Stan

Автор: Guangyuan Gao
Название: Bayesian Claims Reserving Methods in Non-life Insurance with Stan
ISBN: 9811336083 ISBN-13(EAN): 9789811336089
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book first provides a review of various aspects of Bayesian statistics. It then investigates three types of claims reserving models in the Bayesian framework: chain ladder models, basis expansion models involving a tail factor, and multivariate copula models. For the Bayesian inferential methods, this book largely relies on Stan, a specialized software environment which applies Hamiltonian Monte Carlo method and variational Bayes.

Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Автор: Adriano Polpo; Julio Stern; Francisco Louzada; Raf
Название: Bayesian Inference and Maximum Entropy Methods in Science and Engineering
ISBN: 3030081869 ISBN-13(EAN): 9783030081867
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in S?o Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.

An Introduction to Secondary Data Analysis with IBM SPSS Statis

Автор: MacInnes John
Название: An Introduction to Secondary Data Analysis with IBM SPSS Statis
ISBN: 1446285774 ISBN-13(EAN): 9781446285770
Издательство: Sage Publications
Рейтинг:
Цена: 6968.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: John MacInnes takes the fear out of statistics for students, and helps to raise the standards of their quantitative methods skills, by clearly and accessibly introducing all that`s needed to know about using secondary data and working with IBM SPSS Statistics.

Regression Diagnostics: An Introduction

Автор: John Fox
Название: Regression Diagnostics: An Introduction
ISBN: 1544375220 ISBN-13(EAN): 9781544375229
Издательство: Sage Publications
Рейтинг:
Цена: 5859.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website at https://tinyurl.com/RegDiag

Introduction to Empirical Processes and Semiparametric Inference

Автор: Michael R. Kosorok
Название: Introduction to Empirical Processes and Semiparametric Inference
ISBN: 1441925783 ISBN-13(EAN): 9781441925787
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Kosorok`s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия