Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media, Gupta Brij B., Perakovic Dragan, Abd El-Latif Ahmed A.


Варианты приобретения
Цена: 37561.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Gupta Brij B., Perakovic Dragan, Abd El-Latif Ahmed A.
Название:  Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
ISBN: 9781799884132
Издательство: Mare Nostrum (Eurospan)
Классификация:


ISBN-10: 1799884139
Обложка/Формат: Hardback
Страницы: 330
Вес: 0.80 кг.
Дата издания: 30.12.2021
Серия: Computing & IT
Язык: English
Размер: 27.94 x 21.59 x 2.69 cm
Читательская аудитория: Professional and scholarly
Ключевые слова: Computer networking & communications,Data mining,Information technology: general issues, COMPUTERS / Data Processing,COMPUTERS / Databases / Data Mining,COMPUTERS / Web / Social Networking
Рейтинг:
Поставляется из: Англии
Описание: Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment.



Handbook of Statistical Analysis and Data Mining Applications, 2 ed.

Автор: Robert Nisbet , Gary Miner, Ken Yale
Название: Handbook of Statistical Analysis and Data Mining Applications, 2 ed.
ISBN: 0124166326 ISBN-13(EAN): 9780124166325
Издательство: Elsevier Science
Рейтинг:
Цена: 13304.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application.

This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas--from science and engineering, to medicine, academia and commerce.

  • Includes input by practitioners for practitioners
  • Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models
  • Contains practical advice from successful real-world implementations
  • Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions
  • Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Автор: Gupta Brij B., Perakovic Dragan, Abd El-Latif Ahmed A.
Название: Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
ISBN: 1799884147 ISBN-13(EAN): 9781799884149
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment.

New Opportunities for Sentiment Analysis and Information Processing

Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi
Название: New Opportunities for Sentiment Analysis and Information Processing
ISBN: 1799880621 ISBN-13(EAN): 9781799880622
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 29522.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.

New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.

Deep Learning-Based Approaches for Sentiment Analysis

Автор: Basant Agarwal, Richi Nayak
Название: Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9811512159 ISBN-13(EAN): 9789811512155
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.

Prominent Feature Extraction for Sentiment Analysis

Автор: Agarwal Basant, Mittal Namita
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319797751 ISBN-13(EAN): 9783319797755
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

New Opportunities for Sentiment Analysis and Information Processing

Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi
Название: New Opportunities for Sentiment Analysis and Information Processing
ISBN: 1799880613 ISBN-13(EAN): 9781799880615
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 39085.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.

New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.

Natural Language Processing for Social Media

Автор: Anna Atefeh Farzindar, Diana Inkpen
Название: Natural Language Processing for Social Media
ISBN: 1681738139 ISBN-13(EAN): 9781681738130
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 14276.00 р.
Наличие на складе: Нет в наличии.

Описание: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents.

Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF).

In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Natural Language Processing for Social Media

Автор: Anna Atefeh Farzindar, Diana Inkpen
Название: Natural Language Processing for Social Media
ISBN: 1681738112 ISBN-13(EAN): 9781681738116
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 11365.00 р.
Наличие на складе: Нет в наличии.

Описание: In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents.

Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF).

In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.

Social Media Mining

Автор: Ishikawa Hiroshi
Название: Social Media Mining
ISBN: 149871093X ISBN-13(EAN): 9781498710930
Издательство: Taylor&Francis
Рейтинг:
Цена: 16843.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book focuses on the basic concepts and the related technologies of data mining for social medial. Topics include: big data and social data, data mining for making a hypothesis, multivariate analysis for verifying the hypothesis, web mining and media mining, natural language processing, social big data applications, and scalability. It explains analytical techniques such as modeling, data mining, and multivariate analysis for social big data. This book is different from other similar books in that presents the overall picture of social big data from fundamental concepts to applications while standing on academic bases.

Social Media Data Extraction and Content Analysis

Автор: Shalin Hai-Jew
Название: Social Media Data Extraction and Content Analysis
ISBN: 1522506489 ISBN-13(EAN): 9781522506485
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 33403.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Explores various social networking platforms and the technologies being utilized to gather and analyse information being posted to these venues. Highlighting emergent research, analytical techniques, and best practices in data extraction in global electronic culture, this publication is an essential reference source for researchers, academics, and professionals.

Critical Approaches to Information Retrieval Research

Автор: Muhammad Sarfraz
Название: Critical Approaches to Information Retrieval Research
ISBN: 1799810216 ISBN-13(EAN): 9781799810216
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 26195.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Information retrieval (IR) is considered to be the science of searching for information from a variety of information sources related to texts, images, sounds, or multimedia. With the rise of the internet and digital databases, updated information retrieval methodologies are essential to ensure the continued facilitation and enhancement of information exchange.

Critical Approaches to Information Retrieval Research is a critical scholarly publication that provides multidisciplinary examinations of theoretical innovations and methods in information retrieval technologies including search and storage applications for data, text, image, sound, document, and video retrieval. Featuring a wide range of topics including data mining, machine learning, and ontology, this book is ideal for librarians, software engineers, data scientists, professionals, researchers, information engineers, scientists, practitioners, and academicians working in the fields of computer science, information technology, information and communication sciences, education, health, library, and more.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия