Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning and Optimization Models for Optimization in Cloud, Gupta Punit, Goyal Mayank Kumar, Chakraborty Sudeshna


Варианты приобретения
Цена: 20671.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Gupta Punit, Goyal Mayank Kumar, Chakraborty Sudeshna
Название:  Machine Learning and Optimization Models for Optimization in Cloud
ISBN: 9781032028200
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1032028203
Обложка/Формат: Hardcover
Страницы: 204
Вес: 0.49 кг.
Дата издания: 28.02.2022
Серия: Chapman & hall/distributed computing and intelligent data analytics series
Язык: English
Иллюстрации: 20 tables, black and white; 92 line drawings, black and white; 1 halftones, black and white; 93 illustrations, black and white
Размер: 23.39 x 15.60 x 1.42 cm
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: Cloud computing has been a new trend in problem-solving and providing reliable computing platform for big and high computational tasks. This technique is used for business industries like banking, trading and many e-commerce businesses to accommodate high request rate, high availability for all time without stopping system and system failure.


Algorithms for Optimization

Автор: Kochenderfer Mykel J., Wheeler Tim A.
Название: Algorithms for Optimization
ISBN: 0262039427 ISBN-13(EAN): 9780262039420
Издательство: MIT Press
Рейтинг:
Цена: 14390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.

This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Machine Learning, Optimization, and Big Data

Автор: Panos Pardalos; Mario Pavone; Giovanni Maria Farin
Название: Machine Learning, Optimization, and Big Data
ISBN: 3319279254 ISBN-13(EAN): 9783319279251
Издательство: Springer
Рейтинг:
Цена: 7826.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This bookconstitutes revised selected papers from the First International Workshop onMachine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily,Italy, in July 2015. The 32papers presented in this volume were carefully reviewed and selected from 73submissions.

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Logistics Management and Optimization through Hybrid Artificial Intelligence Systems

Автор: Carlos Alberto Ochoa Ortiz Zezzatti, Camelia Chira, Arturo Hernandez, Miguel Basurto
Название: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems
ISBN: 146660297X ISBN-13(EAN): 9781466602977
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems offers the latest research within the field of HAIS, surveying the broad topics and collecting case studies, future directions, and cutting edge analyses. Using biologically inspired algorithms such as ant colony optimization and particle swarm optimization, this text includes solutions and heuristics for practitioners and academics alike, offering a vital resource for staying abreast in this ever-burgeoning field.

Optimization for machine learning

Название: Optimization for machine learning
ISBN: 0262537761 ISBN-13(EAN): 9780262537766
Издательство: MIT Press
Рейтинг:
Цена: 13794.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities.

The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.
Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Linear algebra and optimization with applications to machine learning - volume i: linear algebra for computer vision, robotics, and machine learning

Автор: Gallier, Jean H (univ Of Pennsylvania, Usa) Quaintance, Jocelyn (univ Of Pennsylvania, Usa)
Название: Linear algebra and optimization with applications to machine learning - volume i: linear algebra for computer vision, robotics, and machine learning
ISBN: 9811207712 ISBN-13(EAN): 9789811207716
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.

Machine Learning, Optimization, and Data Science

Автор: Giuseppe Nicosia; Panos Pardalos; Renato Umeton; G
Название: Machine Learning, Optimization, and Data Science
ISBN: 3030375986 ISBN-13(EAN): 9783030375980
Издательство: Springer
Рейтинг:
Цена: 13695.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019.

Machine Learning, Optimization, and Data Science

Автор: Giuseppe Nicosia; Panos Pardalos; Giovanni Giuffri
Название: Machine Learning, Optimization, and Data Science
ISBN: 3030137082 ISBN-13(EAN): 9783030137083
Издательство: Springer
Рейтинг:
Цена: 11459.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the post-conference proceedings of the 4th International Conference on Machine Learning, Optimization, and Data Science, LOD 2018, held in Volterra, Italy, in September 2018.The 46 full papers presented were carefully reviewed and selected from 126 submissions.

Linear Algebra And Optimization With Applications To Machine Learning - Volume I: Linear Algebra For Computer Vision, Robotics, And Machine Learning

Автор: Gallier Jean H, Quaintance Jocelyn
Название: Linear Algebra And Optimization With Applications To Machine Learning - Volume I: Linear Algebra For Computer Vision, Robotics, And Machine Learning
ISBN: 9811206392 ISBN-13(EAN): 9789811206399
Издательство: World Scientific Publishing
Рейтинг:
Цена: 28512.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.

Optimization in Machine Learning and Applications

Автор: Anand J. Kulkarni; Suresh Chandra Satapathy
Название: Optimization in Machine Learning and Applications
ISBN: 981150993X ISBN-13(EAN): 9789811509933
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making.

Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning

Автор: Quaintance Jocelyn, Gallier Jean H
Название: Linear Algebra And Optimization With Applications To Machine Learning - Volume Ii: Fundamentals Of Optimization Theory With Applications To Machine Learning
ISBN: 9811216568 ISBN-13(EAN): 9789811216565
Издательство: World Scientific Publishing
Рейтинг:
Цена: 28512.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Volume 2 applies the linear algebra concepts presented in Volume 1 to optimization problems which frequently occur throughout machine learning. This book blends theory with practice by not only carefully discussing the mathematical under pinnings of each optimization technique but by applying these techniques to linear programming, support vector machines (SVM), principal component analysis (PCA), and ridge regression. Volume 2 begins by discussing preliminary concepts of optimization theory such as metric spaces, derivatives, and the Lagrange multiplier technique for finding extrema of real valued functions. The focus then shifts to the special case of optimizing a linear function over a region determined by affine constraints, namely linear programming. Highlights include careful derivations and applications of the simplex algorithm, the dual-simplex algorithm, and the primal-dual algorithm. The theoretical heart of this book is the mathematically rigorous presentation of various nonlinear optimization methods, including but not limited to gradient decent, the Karush-Kuhn-Tucker (KKT) conditions, Lagrangian duality, alternating direction method of multipliers (ADMM), and the kernel method. These methods are carefully applied to hard margin SVM, soft margin SVM, kernel PCA, ridge regression, lasso regression, and elastic-net regression. Matlab programs implementing these methods are included.

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Автор: Marwala Tshilidzi, Leke Collins Achepsah
Название: Handbook Of Machine Learning - Volume 2: Optimization And Decision Making
ISBN: 9811205663 ISBN-13(EAN): 9789811205668
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19008.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Building on Handbook of Machine Learning - Volume 1: Foundation of Artificial Intelligence, this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия