Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis, Patrangenaru Victor, Ellingson Leif


Варианты приобретения
Цена: 7348.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Patrangenaru Victor, Ellingson Leif
Название:  Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis
ISBN: 9780367737825
Издательство: Taylor&Francis
Классификация:


ISBN-10: 0367737825
Обложка/Формат: Paperback
Страницы: 517
Вес: 0.74 кг.
Дата издания: 18.12.2020
Язык: English
Размер: 23.11 x 15.49 x 3.30 cm
Читательская аудитория: Tertiary education (us: college)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

A New Way of Analyzing Object Data from a Nonparametric Viewpoint



Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields, including statistics, medical imaging, computer vision, pattern recognition, and bioinformatics.





The book begins with a survey of illustrative examples of object data before moving to a review of concepts from mathematical statistics, differential geometry, and topology. The authors next describe theory and methods for working on various manifolds, giving a historical perspective of concepts from mathematics and statistics. They then present problems from a wide variety of areas, including diffusion tensor imaging, similarity shape analysis, directional data analysis, and projective shape analysis for machine vision. The book concludes with a discussion of current related research and graduate-level teaching topics as well as considerations related to computational statistics.





Researchers in diverse fields must combine statistical methodology with concepts from projective geometry, differential geometry, and topology to analyze data objects arising from non-Euclidean object spaces. An expert-driven guide to this approach, this book covers the general nonparametric theory for analyzing data on manifolds, methods for working with specific spaces, and extensive applications to practical research problems. These problems show how object data analysis opens a formidable door to the realm of big data analysis.




Categorical and Nonparametric Data Analysis

Автор: Nussbaum E Michael
Название: Categorical and Nonparametric Data Analysis
ISBN: 1138787825 ISBN-13(EAN): 9781138787827
Издательство: Taylor&Francis
Рейтинг:
Цена: 12248.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.  Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.  Problems in each chapter help readers test their understanding of the material.  Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.  Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Missing and modified data in nonparametric estimation

Автор: Efromovich, Sam (ut Dallas, Richardson, Tx)
Название: Missing and modified data in nonparametric estimation
ISBN: 1138054887 ISBN-13(EAN): 9781138054882
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.

Nonparametric Functional Data Analysis

Автор: Fr?d?ric Ferraty; Philippe Vieu
Название: Nonparametric Functional Data Analysis
ISBN: 1441921419 ISBN-13(EAN): 9781441921413
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Nonparametric Statistics - A Step-by-Step Approach  2e

Автор: Corder
Название: Nonparametric Statistics - A Step-by-Step Approach 2e
ISBN: 1118840313 ISBN-13(EAN): 9781118840313
Издательство: Wiley
Рейтинг:
Цена: 13139.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught.

Nonparametric Statistics with Applications to Scie nce and Engineering with R, Second Edition

Автор: Kvam
Название: Nonparametric Statistics with Applications to Scie nce and Engineering with R, Second Edition
ISBN: 1119268133 ISBN-13(EAN): 9781119268130
Издательство: Wiley
Рейтинг:
Цена: 16790.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The hypersexual female ghost continues to be a source of fascination in East Asian media, much like the sexually predatory vampire in American and European culture. But while vampires can be of either gender, erotic Chinese ghosts are almost exclusively female. The significance of this gender asymmetry in Chinese literary history is the subject of Judith Zeitlin`s meticulously researched new book.

An Introduction to nonparametric statistics

Автор: Kolassa, John E.
Название: An Introduction to nonparametric statistics
ISBN: 0367194848 ISBN-13(EAN): 9780367194840
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.

Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique

Автор: Nussbaum E. Michael
Название: Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique
ISBN: 1848726031 ISBN-13(EAN): 9781848726031
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.

Highlights include the following:

  • Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
  • Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
  • Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
  • Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
  • Problems in each chapter help readers test their understanding of the material.
  • Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
  • Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.

Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications

Автор: Chiara Brombin; Luigi Salmaso; Lara Fontanella; Lu
Название: Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications
ISBN: 3319263102 ISBN-13(EAN): 9783319263106
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests.

Nonparametric Inference on Manifolds

Автор: Bhattacharya
Название: Nonparametric Inference on Manifolds
ISBN: 1107484316 ISBN-13(EAN): 9781107484313
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.

Nonparametric Statistics: Theory And Methods

Автор: Deshpande Jayant V, Naik-nimbalkar Uttara, Dewan Isha
Название: Nonparametric Statistics: Theory And Methods
ISBN: 9814663573 ISBN-13(EAN): 9789814663571
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The number of books on Nonparametric Methodology is quite small as compared to, say, on Design of Experiments, Regression Analysis, Multivariate Analysis, etc.

Prior Processes and Their Applications: Nonparametric Bayesian Estimation

Автор: Phadia Eswar G.
Название: Prior Processes and Their Applications: Nonparametric Bayesian Estimation
ISBN: 3319813706 ISBN-13(EAN): 9783319813707
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process.

Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data

Автор: Arboretti
Название: Parametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data
ISBN: 3319917390 ISBN-13(EAN): 9783319917399
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Chapter 1. The CUB models.- Chapter 2. Customer satisfaction heterogeneity.- Chapter 3. Ranking multivariate populations.- Chapter 4. Composite indicators and satisfaction profiles.- Chapter 5. Analyzing Survey Data Using Multivariate Rank-Based Inference


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия