Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Privacy-Preserving Machine Learning, Li Jin, Li Ping, Liu Zheli


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Li Jin, Li Ping, Liu Zheli
Название:  Privacy-Preserving Machine Learning
ISBN: 9789811691386
Издательство: Springer
Классификация:

ISBN-10: 981169138X
Обложка/Формат: Paperback
Страницы: 98
Вес: 0.15 кг.
Дата издания: 15.04.2022
Серия: Springerbriefs on cyber security systems and networks
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 50 tables, color; 18 illustrations, color; 3 illustrations, black and white; viii, 88 p. 21 illus., 18 illus. in color.
Размер: 23.39 x 15.60 x 0.51 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
Дополнительное описание: Introduction.- Secure Cooperative Learning in Early Years.- Outsourced Computation for Learning.- Secure Distributed Learning.- Learning with Differential Privacy.- Applications - Privacy-Preserving Image Processing.- Threats in Open Environment.- Conclus



Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Privacy-Preserving in Mobile Crowdsensing

Автор: Chuan Zhang, Tong Wu, Youqi Li, Liehuang Zhu
Название: Privacy-Preserving in Mobile Crowdsensing
ISBN: 9811983143 ISBN-13(EAN): 9789811983146
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Mobile crowdsensing is a new sensing paradigm that utilizes the intelligence of a crowd of individuals to collect data for mobile purposes by using their portable devices, such as smartphones and wearable devices. Commonly, individuals are incentivized to collect data to fulfill a crowdsensing task released by a data requester. This “sensing as a service” elaborates our knowledge of the physical world by opening up a new door of data collection and analysis. However, with the expansion of mobile crowdsensing, privacy issues urgently need to be solved. In this book, we discuss the research background and current research process of privacy protection in mobile crowdsensing. In the first chapter, the background, system model, and threat model of mobile crowdsensing are introduced. The second chapter discusses the current techniques to protect user privacy in mobile crowdsensing. Chapter three introduces the privacy-preserving content-based task allocation scheme. Chapter four further introduces the privacy-preserving location-based task scheme. Chapter five presents the scheme of privacy-preserving truth discovery with truth transparency. Chapter six proposes the scheme of privacy-preserving truth discovery with truth hiding. Chapter seven summarizes this monograph and proposes future research directions. In summary, this book introduces the following techniques in mobile crowdsensing: 1) describe a randomizable matrix-based task-matching method to protect task privacy and enable secure content-based task allocation; 2) describe a multi-clouds randomizable matrix-based task-matching method to protect location privacy and enable secure arbitrary range queries; and 3) describe privacy-preserving truth discovery methods to support efficient and secure truth discovery. These techniques are vital to the rapid development of privacy-preserving in mobile crowdsensing.

Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing

Автор: Christen Peter, Ranbaduge Thilina, Schnell Rainer
Название: Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing
ISBN: 3030597083 ISBN-13(EAN): 9783030597085
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases.

Compressed Sensing for Privacy-Preserving Data Processing

Автор: Matteo Testa; Diego Valsesia; Tiziano Bianchi; Enr
Название: Compressed Sensing for Privacy-Preserving Data Processing
ISBN: 9811322783 ISBN-13(EAN): 9789811322785
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The objective of this book is to provide the reader with a comprehensive survey of the topic compressed sensing in information retrieval and signal detection with privacy preserving functionality without compromising the performance of the embedding in terms of accuracy or computational efficiency. The reader is guided in exploring the topic by first establishing a shared knowledge about compressed sensing and how it is used nowadays. Then, clear models and definitions for its use as a cryptosystem and a privacy-preserving embedding are laid down, before tackling state-of-the-art results for both applications. The reader will conclude the book having learned that the current results in terms of security of compressed techniques allow it to be a very promising solution to many practical problems of interest. The book caters to a broad audience among researchers, scientists, or engineers with very diverse backgrounds, having interests in security, cryptography and privacy in information retrieval systems. Accompanying software is made available on the authors’ website to reproduce the experiments and techniques presented in the book. The only background required to the reader is a good knowledge of linear algebra, probability and information theory.

Privacy-Preserving in Edge Computing

Автор: Gao
Название: Privacy-Preserving in Edge Computing
ISBN: 9811622019 ISBN-13(EAN): 9789811622014
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Therefore, the emergence of edge computing has been recently developed as a new computing paradigm that can collect and process data at the edge of the network, which brings significant convenience to solving problems such as delay, bandwidth, and off-loading in the traditional cloud computing paradigm.

The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy: SPIoT-2021 Volume 1

Автор: Macintyre John, Zhao Jinghua, Ma Xiaomeng
Название: The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy: SPIoT-2021 Volume 1
ISBN: 3030895076 ISBN-13(EAN): 9783030895075
Издательство: Springer
Рейтинг:
Цена: 30745.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Application of Artificial Intelligence in Arrangement Creation.- Automatic Segmentation for Retinal Vessel Using Concatenate UNet++.- Experimental Analysis of Mandarin Tone Pronunciation of Tibetan College Students for Artificial Intelligence Speech Recognition.- Exploration of Paths for Artificial Intelligence Technology to Promote Economic Development.- Influence of RPA Financial Robot on Financial Accounting and its Countermeasures.- Application of Artificial Intelligence Technology in English Online Learning Platform.- Spectral Identification Model of NIR Origin Based on Deep Extreme Learning Machine.- Frontier Application and Development Trend of Artificial Intelligence in New Media in the AI Era.- Analysis on the Application of Machine Learning Stock Selection Algorithm in the Financial Field.- Default Risk Prediction Based on Machine Learning under Big Data Analysis Technology.- Application of Intelligent Detection Technology and Machine Learning Algorithm in Music Intelligent System.- Application of 3D Computer Aided System in Dance Creation and Learning.- Data Selection and Machine Learning Algorithm Application under the Background of Big Data.

Availability, Reliability, and Security in Information Systems

Автор: Buccafurri
Название: Availability, Reliability, and Security in Information Systems
ISBN: 3319455060 ISBN-13(EAN): 9783319455068
Издательство: Springer
Рейтинг:
Цена: 8944.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This volume constitutes the refereed proceedings of the IFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference on Availability, Reliability and Security in Information Systems, CD-ARES 2016, and the Workshop on Privacy Aware Machine Learning for Health Data Science, PAML 2016, co-located with the International Conference on Availability, Reliability and Security, ARES 2016, held in Salzburg, Austria, in September 2016. The 13 revised full papers and 4 short papers presented were carefully reviewed and selected from 23 submissions. They are organized in the following topical sections: Web and semantics; diagnosis, prediction and machine learning; security and privacy; visualization and risk management; and privacy aware machine learning for health data science.
Preserving Privacy Against Side-Channel Leaks

Автор: Liu
Название: Preserving Privacy Against Side-Channel Leaks
ISBN: 3319426427 ISBN-13(EAN): 9783319426426
Издательство: Springer
Рейтинг:
Цена: 10760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book offers a novel approach to data privacy by unifying side-channel attacks within a general conceptual framework. This book then applies the framework in three concrete domains.
First, the book examines privacy-preserving data publishing with publicly-known algorithms, studying a generic strategy independent of data utility measures and syntactic privacy properties before discussing an extended approach to improve the efficiency. Next, the book explores privacy-preserving traffic padding in Web applications, first via a model to quantify privacy and cost and then by introducing randomness to provide background knowledge-resistant privacy guarantee. Finally, the book considers privacy-preserving smart metering by proposing a light-weight approach to simultaneously preserving users' privacy and ensuring billing accuracy.
Designed for researchers and professionals, this book is also suitable for advanced-level students interested in privacy, algorithms, or web applications.
Secure and Privacy-Preserving Data Communication in Internet of Things

Автор: Liehuang Zhu; Zijian Zhang; Chang Xu
Название: Secure and Privacy-Preserving Data Communication in Internet of Things
ISBN: 9811032343 ISBN-13(EAN): 9789811032349
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book mainly concentrates on protecting data security and privacy when participants communicate with each other in the Internet of Things (IoT).

Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing

Автор: Christen Peter, Ranbaduge Thilina, Schnell Rainer
Название: Linking Sensitive Data: Methods and Techniques for Practical Privacy-Preserving Information Sharing
ISBN: 3030597059 ISBN-13(EAN): 9783030597054
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases.

Privacy-Preserving in Edge Computing

Автор: Gao Longxiang, Luan Tom H., Gu Bruce
Название: Privacy-Preserving in Edge Computing
ISBN: 9811621985 ISBN-13(EAN): 9789811621987
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Therefore, the emergence of edge computing has been recently developed as a new computing paradigm that can collect and process data at the edge of the network, which brings significant convenience to solving problems such as delay, bandwidth, and off-loading in the traditional cloud computing paradigm.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия