Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Correlation Clustering, David GarcIa-Soriano, Francesco Bonchi, Francesco Gullo


Варианты приобретения
Цена: 11227.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: David GarcIa-Soriano, Francesco Bonchi, Francesco Gullo
Название:  Correlation Clustering
ISBN: 9781636393254
Издательство: Mare Nostrum (Eurospan)
Классификация:


ISBN-10: 163639325X
Обложка/Формат: Hardback
Страницы: 149
Вес: 0.29 кг.
Дата издания: 30.03.2022
Серия: Synthesis lectures on data mining and knowledge discovery
Язык: English
Размер: 254 x 191
Читательская аудитория: Professional and scholarly
Ключевые слова: Computer networking & communications,Data mining,Digital lifestyle, COMPUTERS / Databases / Data Mining,COMPUTERS / Social Aspects / General,COMPUTERS / Web / Social Networking
Рейтинг:
Поставляется из: Англии
Описание: Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. This book shows how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner.


Core Data Analysis: Summarization, Correlation, and Visualiz

Автор: Mirkin Boris
Название: Core Data Analysis: Summarization, Correlation, and Visualiz
ISBN: 3030002705 ISBN-13(EAN): 9783030002701
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank. Features:· An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter. · Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc.· Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and consensus clustering, modularity clustering and uniform partitioning.New edition highlights: · Inclusion of ranking issues such as Google PageRank, linear stratification and tied rankings median, consensus clustering, semi-average clustering, one-cluster clustering· Restructured to make the logics more straightforward and sections self-containedCore Data Analysis: Summarization, Correlation and Visualization is aimed at those who are eager to participate in developing the field as well as appealing to novices and practitioners.

Unsupervised Machine Learning for Clustering in Political and Social Research

Автор: Philip D. Waggoner
Название: Unsupervised Machine Learning for Clustering in Political and Social Research
ISBN: 110879338X ISBN-13(EAN): 9781108793384
Издательство: Cambridge Academ
Рейтинг:
Цена: 2851.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Offers researchers and teachers an introduction to clustering, which is a prominent class of unsupervised machine learning for exploring and understanding latent, non-random structure in data. A suite of widely used clustering techniques is covered, in addition to R code and real data to facilitate interaction with the concepts.

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Lerman Israлl Cйsar
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447173929 ISBN-13(EAN): 9781447173922
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works

Modern Technologies for Big Data Classification and Clustering

Автор: Seetha Hari, Murty M. Narasimha, Tripathy B. K.
Название: Modern Technologies for Big Data Classification and Clustering
ISBN: 1522528059 ISBN-13(EAN): 9781522528050
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 31324.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage.Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.Topics Covered:The many academic areas covered in this publication include, but are not limited to:Data visualizationDistributed Computing SystemsOpinion MiningPrivacy and securityRisk analysisSocial Network AnalysisText Data AnalyticsWeb Data Analytics

Correlation Clustering

Автор: Francesco
Название: Correlation Clustering
ISBN: 3031791983 ISBN-13(EAN): 9783031791987
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters.

Correlation Clustering: Morgan & Claypool Publishers

Автор: Bonchi Francesco, Garcнa-Soriano David, Gullo Francesco
Название: Correlation Clustering: Morgan & Claypool Publishers
ISBN: 1636393233 ISBN-13(EAN): 9781636393230
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 8455.00 р.
Наличие на складе: Нет в наличии.

Описание:

Given a set of objects and a pairwise similarity measure between them, the goal of correlation clustering is to partition the objects in a set of clusters to maximize the similarity of the objects within the same cluster and minimize the similarity of the objects in different clusters. In most of the variants of correlation clustering, the number of clusters is not a given parameter; instead, the optimal number of clusters is automatically determined.

Correlation clustering is perhaps the most natural formulation of clustering: as it just needs a definition of similarity, its broad generality makes it applicable to a wide range of problems in different contexts, and, particularly, makes it naturally suitable to clustering structured objects for which feature vectors can be difficult to obtain. Despite its simplicity, generality, and wide applicability, correlation clustering has so far received much more attention from an algorithmic-theory perspective than from the data-mining community. The goal of this lecture is to show how correlation clustering can be a powerful addition to the toolkit of a data-mining researcher and practitioner, and to encourage further research in the area.

Adaptive Resonance Theory in Social Media Data Clustering

Автор: Lei Meng; Ah-Hwee Tan; Donald C. Wunsch II
Название: Adaptive Resonance Theory in Social Media Data Clustering
ISBN: 3030029840 ISBN-13(EAN): 9783030029845
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:Basic knowledge (data & challenges) on social media analyticsClustering as a fundamental technique for unsupervised knowledge discovery and data miningA class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domainAdaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:How to process big streams of multimedia data?How to analyze social networks with heterogeneous data?How to understand a user’s interests by learning from online posts and behaviors?How to create a personalized search engine by automatically indexing and searching multimodal information resources? .

Data Clustering in C++

Автор: Gan, Guojun
Название: Data Clustering in C++
ISBN: 0367382954 ISBN-13(EAN): 9780367382957
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data clustering is a highly interdisciplinary field, the goal of which is to divide a set of objects into homogeneous groups such that objects in the same group are similar and objects in different groups are quite distinct. Thousands of theoretical papers and a number of books on data clustering have been published over the past 50 years. However, few books exist to teach people how to implement data clustering algorithms. This book was written for anyone who wants to implement or improve their data clustering algorithms.



Using object-oriented design and programming techniques, Data Clustering in C++ exploits the commonalities of all data clustering algorithms to create a flexible set of reusable classes that simplifies the implementation of any data clustering algorithm. Readers can follow the development of the base data clustering classes and several popular data clustering algorithms. Additional topics such as data pre-processing, data visualization, cluster visualization, and cluster interpretation are briefly covered.





This book is divided into three parts--







  • Data Clustering and C++ Preliminaries: A review of basic concepts of data clustering, the unified modeling language, object-oriented programming in C++, and design patterns


  • A C++ Data Clustering Framework: The development of data clustering base classes


  • Data Clustering Algorithms: The implementation of several popular data clustering algorithms






A key to learning a clustering algorithm is to implement and experiment the clustering algorithm. Complete listings of classes, examples, unit test cases, and GNU configuration files are included in the appendices of this book as well as in the downloadable resources. The only requirements to compile the code are a modern C++ compiler and the Boost C++ libraries.

Advances in K-means Clustering

Автор: Junjie Wu
Название: Advances in K-means Clustering
ISBN: 3642447570 ISBN-13(EAN): 9783642447570
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The K-means algorithm is commonly used in data mining and business intelligence. This award-winning research pioneers its application to the intricacies of `big data`, detailing a theoretical framework for aggregating and validating clusters with K-means.

Evolutionary Data Clustering: Algorithms and Applications

Автор: Aljarah Ibrahim, Faris Hossam, Mirjalili Seyedali
Название: Evolutionary Data Clustering: Algorithms and Applications
ISBN: 9813341939 ISBN-13(EAN): 9789813341937
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization.

Clustering Methods for Big Data Analytics

Автор: Olfa Nasraoui; Chiheb-Eddine Ben N`Cir
Название: Clustering Methods for Big Data Analytics
ISBN: 3319978632 ISBN-13(EAN): 9783319978635
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

Clustering High--Dimensional Data

Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove
Название: Clustering High--Dimensional Data
ISBN: 3662485761 ISBN-13(EAN): 9783662485767
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия