Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reinforcement Learning for Finance, Ahlawat


Варианты приобретения
Цена: 4890.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ahlawat
Название:  Reinforcement Learning for Finance
ISBN: 9781484288344
Издательство: Springer
Классификация:


ISBN-10: 1484288343
Обложка/Формат: Soft cover
Страницы: 423
Вес: 0.67 кг.
Дата издания: 10.01.2023
Язык: English
Издание: 1st ed.
Иллюстрации: 84 illustrations, color; 1 illustrations, black and white; xv, 423 p. 85 illus., 84 illus. in color.
Размер: 234 x 157 x 32
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Solve problems in finance with cnn and rnn using the tensorflow library
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library. Reinforcement Learning for Finance begins by describing methods for training neural networks. Next, it discusses CNN and RNN – two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, and loss functions. After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library. What You Will Learn * Understand the fundamentals of reinforcement learning * Apply reinforcement learning programming techniques to solve quantitative-finance problems * Gain insight into convolutional neural networks and recurrent neural networks * Understand the Markov decision process Who This Book Is For Data Scientists, Machine Learning engineers and Python programmers who want to apply reinforcement learning to solve problems.
Дополнительное описание: Chapter 1 Overview.- Chapter 2 Introduction to TensorFlow.- Chapter 3 Convolutional Neural Networks.- Chapter 4 Recurrent Neural Networks.- Chapter 5 Reinforcement Learning - Theory.- Chapter 6 Recent RL Algorithms.



Reinforcement Learning for Sequential Decision and Optimal Control

Автор: Shengbo Eben Li
Название: Reinforcement Learning for Sequential Decision and Optimal Control
ISBN: 9811977836 ISBN-13(EAN): 9789811977831
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Поставка под заказ.

Описание: Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.

Model-based reinforcement learning :

Автор: Farsi, Milad,
Название: Model-based reinforcement learning :
ISBN: 111980857X ISBN-13(EAN): 9781119808572
Издательство: Wiley
Рейтинг:
Цена: 16315.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization.

Reinforcement learning algorithms with python

Автор: Lonza, Andrea
Название: Reinforcement learning algorithms with python
ISBN: 1789131111 ISBN-13(EAN): 9781789131116
Издательство: Неизвестно
Рейтинг:
Цена: 7171.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies

Автор: Li, Chong
Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
ISBN: 1138543535 ISBN-13(EAN): 9781138543539
Издательство: Taylor&Francis
Рейтинг:
Цена: 12707.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Foundations of reinforcement learning with applications in finance

Автор: Rao, Ashwin (stanford University, Usa) Jelvis, Tikhon
Название: Foundations of reinforcement learning with applications in finance
ISBN: 1032124121 ISBN-13(EAN): 9781032124124
Издательство: Taylor&Francis
Рейтинг:
Цена: 11482.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book demystifies Reinforcement Learning, and makes it a practically useful tool for those studying and working in applied areas, especially finance. This book seeks to overcome that barrier, and to introduce the foundations of RL in a way that balances depth of understanding with clear, minimally technical delivery.

Statistical Reinforcement Learning

Автор: Sugiyama, Masashi
Название: Statistical Reinforcement Learning
ISBN: 0367575868 ISBN-13(EAN): 9780367575861
Издательство: Taylor&Francis
Рейтинг:
Цена: 6889.00 р.
Наличие на складе: Поставка под заказ.

Reinforcement Learning Aided Performance Optimization of Feedback Control Systems

Автор: Hua, Changsheng
Название: Reinforcement Learning Aided Performance Optimization of Feedback Control Systems
ISBN: 3658330333 ISBN-13(EAN): 9783658330330
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems.

Deep Reinforcement Learning Hands-On - Second Edition

Автор: Lapan Maxim
Название: Deep Reinforcement Learning Hands-On - Second Edition
ISBN: 1838826998 ISBN-13(EAN): 9781838826994
Издательство: Неизвестно
Рейтинг:
Цена: 14712.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With six new chapters, Deep Reinforcement Learning Hands-On Second edition is completely updated and expanded with the very latest reinforcement learning (RL) tools and techniques, providing you with an introduction to RL, as well as the hands-on ability to code intelligent learning agents to perform a range of practical tasks.

Recent advances in reinforcement learning

Название: Recent advances in reinforcement learning
ISBN: 0792397053 ISBN-13(EAN): 9780792397052
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Addresses research in the Artificial Intelligence and Neural Network communities. This book includes topics such as the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques.

Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context

Автор: Kunczik
Название: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context
ISBN: 3658376155 ISBN-13(EAN): 9783658376154
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution. The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today's NISQ hardware, the algorithm is evaluated on IBM's quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforcement Learning.

Statistical Reinforcement Learning

Автор: Sugiyama
Название: Statistical Reinforcement Learning
ISBN: 1439856893 ISBN-13(EAN): 9781439856895
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.

Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.

  • Covers the range of reinforcement learning algorithms from a modern perspective
  • Lays out the associated optimization problems for each reinforcement learning scenario covered
  • Provides thought-provoking statistical treatment of reinforcement learning algorithms

The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.

This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

Applying Reinforcement Learning on Real-World Data with Practical Examples in Python

Автор: Osborne
Название: Applying Reinforcement Learning on Real-World Data with Practical Examples in Python
ISBN: 3031791665 ISBN-13(EAN): 9783031791666
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия