Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Big Data, Algorithms and Food Safety, Sapienza


Варианты приобретения
Цена: 13974.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sapienza
Название:  Big Data, Algorithms and Food Safety
ISBN: 9783031093661
Издательство: Springer
Классификация:



ISBN-10: 3031093666
Обложка/Формат: Hardback
Страницы: 216
Вес: 0.52 кг.
Дата издания: 04.11.2022
Серия: Law, Governance and Technology Series
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 1 illustrations, black and white; xiv, 216 p. 1 illus.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Law
Подзаголовок: A legal and ethical approach to data ownership and data governance
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book identifies the principles that should be applied when processing Big Data in the context of food safety risk assessments. Food safety is a critical goal in the protection of individuals’ right to health and the flourishing of the food and feed market. Big Data is fostering new applications capable of enhancing the accuracy of food safety risk assessments. An extraordinary amount of information is analysed to detect the existence or predict the likelihood of future risks, also by means of machine learning algorithms. Big Data and novel analysis techniques are topics of growing interest for food safety agencies, including the European Food Safety Authority (EFSA). This wealth of information brings with it both opportunities and risks concerning the extraction of meaningful inferences from data. However, conflicting interests and tensions among the parties involved are hindering efforts to find shared methods for steering the processing of Big Data in a sound, transparent and trustworthy way. While consumers call for more transparency, food business operators tend to be reluctant to share informational assets. This has resulted in a considerable lack of trust in the EU food safety system. A recent legislative reform, supported by new legal cases, aims to restore confidence in the risk analysis system by reshaping the meaning of data ownership in this domain. While this regulatory approach is being established, breakthrough analytics techniques are encouraging thinking about the next steps in managing food safety data in the age of machine learning. The book focuses on two core topics – data ownership and data governance – by evaluating how the regulatory framework addresses the challenges raised by Big Data and its analysis in an applied, significant, and overlooked domain. To do so, it adopts an interdisciplinary approach that considers both the technological advances and the policy tools adopted in the European Union, while also assuming an ethical perspective when exploring potential solutions. The conclusion puts forward a proposal: an ethical blueprint for identifying the principles – Security, Accountability, Fairness, Explainability, Transparency and Privacy – to be observed when processing Big Data for food safety purposes, including by means of machine learning. Possible implementations are then discussed, also in connection with two recent legislative proposals, namely the Data Governance Act and the Artificial Intelligence Act.
Дополнительное описание: Chapter 1:Food, Big Data, Artificial Intelligence.- Chapter 2:Data Ownership in Food-related Information.- Chapter 3:Food Consumption Data Protection.- Chapter 4:Current and Foreseeable Trends in Food Safety Data Governance.- Chapter 5: The P-SAFETY Model



Noise Filtering for Big Data Analytics

Автор: Koushik Ghosh, Souvik Bhattacharyya
Название: Noise Filtering for Big Data Analytics
ISBN: 3110697092 ISBN-13(EAN): 9783110697094
Издательство: Walter de Gruyter
Рейтинг:
Цена: 26024.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model.

Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information.

This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.

Big Data Analysis: New Algorithms for a New Society

Автор: Japkowicz Nathalie, Stefanowski Jerzy
Название: Big Data Analysis: New Algorithms for a New Society
ISBN: 3319800531 ISBN-13(EAN): 9783319800530
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area.

Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications

Автор: Dulhare Uma N., Ahmad Khaleel, Bin Ahmad Khairol Amali
Название: Machine Learning and Big Data: Concepts, Algorithms, Tools and Applications
ISBN: 1119654742 ISBN-13(EAN): 9781119654742
Издательство: Wiley
Рейтинг:
Цена: 28979.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations.

The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems.

Subjects covered in detail include:

  • Mathematical foundations of machine learning with various examples.
  • An empirical study of supervised learning algorithms like Naпve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview.
  • Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth.
  • Hands-on machine leaning open source tools viz. Apache Mahout, H2O.
  • Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning.
  • Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.
Bio-Inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing

Автор: Fong Simon James, Millham Richard C.
Название: Bio-Inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
ISBN: 9811566976 ISBN-13(EAN): 9789811566974
Издательство: Springer
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases.

Advances in Big Data Analytics: Theory, Algorithms and Practices

Автор: Shi Yong
Название: Advances in Big Data Analytics: Theory, Algorithms and Practices
ISBN: 9811636060 ISBN-13(EAN): 9789811636066
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It addresses the concepts of big data analytics and/or data science, multi-criteria optimization for learning, expert and rule-based data analysis, support vector machines for classification, feature selection, data stream analysis, learning analysis, sentiment analysis, link analysis, and evaluation analysis.

Bioinformatics and medical applications: big data using deep learning algorithms

Автор: Suresh, A. Vimal, S. Robinson, Y. Harold Ramaswami, Dhinesh Kumar Udendhran, R.
Название: Bioinformatics and medical applications: big data using deep learning algorithms
ISBN: 1119791839 ISBN-13(EAN): 9781119791836
Издательство: Wiley
Рейтинг:
Цена: 29771.00 р.
Наличие на складе: Поставка под заказ.

Описание: Driverless Finance explores the threats that different fintech innovations pose for our financial system. With in-depth and accessible descriptions of new financial technologies and business models - ranging from distributed ledgers to machine learning, cryptoassets to robo-investing - this book allows readers to think more critically about fintech, and about how the law should respond to it.

Healthcare Big Data Analytics: Computational Optimization and Cohesive Approaches

Автор: Akash Kumar Bhoi, Ranjit Panigrahi, Rutvij H. Jhaveri, Victor, Hugo C. de Albuquerque
Название: Healthcare Big Data Analytics: Computational Optimization and Cohesive Approaches
ISBN: 3110750732 ISBN-13(EAN): 9783110750737
Издательство: Walter de Gruyter
Рейтинг:
Цена: 32533.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book highlights how optimized big data applications can be used for patient monitoring and clinical diagnosis. In fact, IoT based applications are data driven and mostly employs modern optimization techniques. This book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up.

Particle Swarm Optimisation: Classical and Quantum Perspectives

Автор: Jun Sun, Choi-Hong Lai, Xiao-Jun Wu
Название: Particle Swarm Optimisation: Classical and Quantum Perspectives
ISBN: 1439835764 ISBN-13(EAN): 9781439835760
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Поставка под заказ.

Описание: Helping readers numerically solve optimization problems, this book focuses on the fundamental principles and applications of PSO and QPSO algorithms. The authors develop their novel QPSO algorithm, a PSO variant motivated from quantum mechanics, and show how to implement it in real-world applications, including inverse problems, digital filter d

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Автор: Sujatha R., Aarthy S. L., Vettriselvan R.
Название: Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics
ISBN: 0367466635 ISBN-13(EAN): 9780367466633
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data science revolves around two giants, which are big data analytics and deep learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of big data along with deep learning systems.

Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing

Автор: Fong, Simon James, Millham, Richard C
Название: Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
ISBN: 9811566941 ISBN-13(EAN): 9789811566943
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and data streaming as well as to provide a more comprehensive approach to the big data management from pre-processing to analytics to visualization phases.

Big Data Analysis: New Algorithms for a New Society

Автор: Nathalie Japkowicz; Jerzy Stefanowski
Название: Big Data Analysis: New Algorithms for a New Society
ISBN: 3319269879 ISBN-13(EAN): 9783319269870
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area.

Modern Algorithms of Cluster Analysis

Автор: Slawomir Wierzcho?; Mieczyslaw A. K?opotek
Название: Modern Algorithms of Cluster Analysis
ISBN: 3319693077 ISBN-13(EAN): 9783319693071
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem. Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented. In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия