Computer Vision and Machine Intelligence Paradigms for SDGs, Kannan
Автор: Gandhi, Tapan K. Название: Advanced Machine Vision Paradigms For Medical Image Analysis ISBN: 012819295X ISBN-13(EAN): 9780128192955 Издательство: Elsevier Science Рейтинг: Цена: 19875.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Computer vision and machine intelligence paradigms are prominent in the domain of medical image applications, including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics. Medical image analysis and understanding are daunting tasks owing to the massive influx of multi-modal medical image data generated during routine clinal practice. Advanced computer vision and machine intelligence approaches have been employed in recent years in the field of image processing and computer vision. However, due to unstructured nature of medical imaging data and the volume of data produced during routine clinical process, the applicability of these meta-heuristic algorithms remains to be investigated.
Advanced Machine Vision Paradigms for Medical Image Analysis presents an overview of how medical imaging data can be analyzed to provide better diagnosis and treatment of disease. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information, from image sequence and 3D/4D information which helps with better human understanding. Many powerful tools have been developed through image segmentation, machine learning, pattern classification, tracking, and reconstruction to surface much needed quantitative information not easily available through the analysis of trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and for computer vision professionals to learn how to provide enhanced medical information by using computer vision techniques. The ultimate objective is to benefit patients without adding to the already high medical costs.
Описание: Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
Автор: Aboul Ella Hassanien Название: Machine Learning Paradigms: Theory and Application ISBN: 3030023567 ISBN-13(EAN): 9783030023560 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-based optimization algorithms.
The concept of machine learning (ML) is not new in the field of computing. However, due to the ever-changing nature of requirements in today’s world it has emerged in the form of completely new avatars. Now everyone is talking about ML-based solution strategies for a given problem set. The book includes research articles and expository papers on the theory and algorithms of machine learning and bio-inspiring optimization, as well as papers on numerical experiments and real-world applications.
Автор: Aristomenis S. Lampropoulos; George A. Tsihrintzis Название: Machine Learning Paradigms ISBN: 3319191349 ISBN-13(EAN): 9783319191348 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This timely book presents Applications in Recommender Systems which are making recommendations using machine learning algorithms trained via examples of content the user likes or dislikes.
Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.
Автор: Rik Das, Siddhartha Bhattacharyya, Sudarshan Nandy Название: Machine Learning Applications: Emerging Trends ISBN: 3110608537 ISBN-13(EAN): 9783110608533 Издательство: Walter de Gruyter Цена: 18586.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.
Описание: Presents research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. The book highlights a wide range of topics such as video segmentation, object recognition, and 3D modelling.
Описание: Chapter 01: Modelling of Disease Transformation.- Chapter 02: Epidemic Forecast.- Chapter 03: COVID-19: Theory and practice.- Chapter 04: Image Processing and Computer Vision.- Chapter 05: Augmented Intelligence: Theory and Applications.- Chapter 06: Soft Computing: Theory and Applications.- Chapter 07: Deep Learning: Theory and Applications.- Chapter 08: Image Reconstruction.- Chapter 09: Artificial Intelligence in Healthcare.- Chapter 10: Brain Computer Interface.- Chapter 11: Cyber Security and Social Network Analysis.- Chapter 12: Natural Language Processing.- Chapter 13: Cryptography and Image Security.
Описание: Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking.
Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
Автор: Siddhartha Bhattacharyya, Indrajit Pan, Ashish Mani, Sourav De, Elizabeth Behrman, Susanta Chakraborti Название: Quantum Machine Learning ISBN: 311067064X ISBN-13(EAN): 9783110670646 Издательство: Walter de Gruyter Цена: 20446.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Quantum-enhanced machine learning refers to quantum algorithms that solve tasks in machine learning, thereby improving a classical machine learning method. Such algorithms typically require one to encode the given classical dataset into a quantum computer, so as to make it accessible for quantum information processing. After this, quantum information processing routines can be applied and the result of the quantum computation is read out by measuring the quantum system. For example, the outcome of the measurement of a qubit could reveal the result of a binary classification task. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal quantum computer to be tested, others have been implemented on small-scale or special purpose quantum devices. The salient features of the book include: In depth analysis of the subject matter with mathematical discourse Video demonstration of each chapter for enabling the readers to have a good understanding of the chapter contents. Examples on real life applications. Illustrative diagrams Coding examples
Автор: Pablo Duboue Название: The Art of Feature Engineering: Essentials for Machine Learning ISBN: 1108709389 ISBN-13(EAN): 9781108709385 Издательство: Cambridge Academ Рейтинг: Цена: 6970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.
Автор: Julio C. Rodriguez-Quinonez, Oleg Sergiyenko, Wendy Flores-Fuentes Название: Examining Optoelectronics in Machine Vision and Applications in Industry 4.0 ISBN: 1799865231 ISBN-13(EAN): 9781799865230 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 26334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Focuses on the examination of emerging technologies for the design, fabrication, and implementation of optoelectronic sensors, devices, and systems in a machine vision approach to support industrial, commercial, and scientific applications.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru