Pattern Recognition and Image Preprocessing, Bow, Sing T.
Автор: Strang Gilbert Название: Linear Algebra and Learning from Data ISBN: 0692196382 ISBN-13(EAN): 9780692196380 Издательство: Cambridge Academ Рейтинг: Цена: 9978.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 1493938436 ISBN-13(EAN): 9781493938438 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong Название: Mathematics for Machine Learning ISBN: 110845514X ISBN-13(EAN): 9781108455145 Издательство: Cambridge Academ Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.
Автор: Leskovec Jure Название: Mining of Massive Datasets ISBN: 1108476341 ISBN-13(EAN): 9781108476348 Издательство: Cambridge Academ Рейтинг: Цена: 10771.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Essential reading for students and practitioners, this book focuses on practical algorithms used to solve key problems in data mining, with exercises suitable for students from the advanced undergraduate level and beyond. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.
Автор: Ortega, Antonio, Название: Introduction to graph signal processing / ISBN: 1108428134 ISBN-13(EAN): 9781108428132 Издательство: Cambridge Academ Рейтинг: Цена: 15418.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An intuitive, accessible text explaining the fundamentals and applications of signal processing on graphs. It covers basic and advanced topics, includes numerous exercises and Matlab examples, and is accompanied online by a solutions manual for instructors, making it essential reading for graduate students, researchers, and industry professionals.
Автор: Athanasios Voulodimos, Anastasios Doulamis Название: Recent Advances in 3D Imaging, Modeling, and Reconstruction ISBN: 1799829960 ISBN-13(EAN): 9781799829966 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 20236.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 3D image reconstruction is used in many fields, such as medicine, entertainment, and computer science. This highly demanded process comes with many challenges, such as images becoming blurry by atmospheric turbulence, getting snowed with noise, or becoming damaged within foreign regions. It is imperative to remain well-informed with the latest research in this field.
Recent Advances in 3D Imaging, Modeling, and Reconstruction is a collection of innovative research on the methods and common techniques of image reconstruction as well as the accuracy of these methods. Featuring coverage on a wide range of topics such as ray casting, holographic techniques, and machine learning, this publication is ideally designed for graphic designers, computer engineers, medical professionals, robotics engineers, city planners, game developers, researchers, academicians, and students.
Автор: Chen, Mei Название: Computer Vision for Microscopy Image Analysis ISBN: 0128149728 ISBN-13(EAN): 9780128149720 Издательство: Elsevier Science Рейтинг: Цена: 17854.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
High-throughput microscopy enables researchers to acquire thousands of images automatically over a short time, making it possible to conduct large-scale, image-based experiments for biological or biomedical discovery. However, visual analysis of large-scale image data is a daunting task. The post-acquisition component of high-throughput microscopy experiments calls for effective and efficient computer vision techniques.
Computer Vision for Microscopy Image Analysis provides a comprehensive and in-depth introduction to state-of-the-art computer vision techniques for microscopy image analysis, demonstrating how they can be effectively applied to biological and medical data.
The reader of the book will learn:
How computer vision analysis can automate and enhance human assessment of microscopy images for discovery
The important steps in microscopy image analysis
State-of-the-art methods for microscopy image analysis including machine learning and deep neural network approaches
This reference on the state-of-the-art computer vision methods in microscopy image analysis is suitable for researchers and graduate students interested in analyzing microscopy images or for developing toolsets for general biomedical image analysis applications.
Each topic contains a comprehensive overview of the field, followed by in-depth presentation of a state-of-the-art approach
Perspectives and content contributed by both technologists and biologists
Tackles specific problems of detection, segmentation, classification, tracking, cellular event detection
Contains the fundamentals of object measurement in microscopy images
Contains open source data and toolsets for microscopy image analysis on an accompanying website
Автор: Shang-Hong Lai; Vincent Lepetit; Ko Nishino; Yoich Название: Computer Vision – ACCV 2016 ISBN: 3319541927 ISBN-13(EAN): 9783319541921 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The five-volume set LNCS 10111-10115 constitutes the thoroughly refereed post-conference proceedings of the 13th Asian Conference on Computer Vision, ACCV 2016, held in Taipei, Taiwan, in November 2016. The total of 143 contributions presented in these volumes was carefully reviewed and selected from 479 submissions.
Автор: Hongbin Zha; Rin-ichiro Taniguchi; Stephen Maybank Название: Computer Vision -- ACCV 2009 ISBN: 3642123066 ISBN-13(EAN): 9783642123061 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In the paper reviewing, we continued the tradition of previous ACCVsbyconductingthe processinadouble-blindmanner.Eachofthe33Area Chairs received a pool of about 20 papers and nominated a number of potential reviewers for each paper.
Автор: Chaki, Jyotismita Название: A Beginner`s Guide to Image Preprocessing Techniques ISBN: 0367570807 ISBN-13(EAN): 9780367570804 Издательство: Taylor&Francis Рейтинг: Цена: 7501.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Salvador Garc?a; Juli?n Luengo; Francisco Herrera Название: Data Preprocessing in Data Mining ISBN: 3319377310 ISBN-13(EAN): 9783319377315 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process.