Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Sparse Graphical Modeling for High Dimensional Data, Liang, Faming


Варианты приобретения
Цена: 14086.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября

Добавить в корзину
в Мои желания

Автор: Liang, Faming
Название:  Sparse Graphical Modeling for High Dimensional Data
ISBN: 9780367183738
Издательство: Taylor&Francis
Классификация:

ISBN-10: 0367183730
Обложка/Формат: Hardback
Страницы: 149
Вес: 0.35 кг.
Дата издания: 02.08.2023
Серия: Chapman & hall/crc monographs on statistics and applied probability
Иллюстрации: 12 tables, black and white; 8 line drawings, color; 7 line drawings, black and white; 8 illustrations, color; 7 illustrations, black and white
Размер: 162 x 242 x 14
Читательская аудитория: Professional & vocational
Подзаголовок: A paradigm of conditional independence tests
Рейтинг:
Поставляется из: Европейский союз


Excel data analysis

Автор: Guerrero, Hector
Название: Excel data analysis
ISBN: 3030012786 ISBN-13(EAN): 9783030012786
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive and readable introduction to modern business and data analytics.

Statistics for High-Dimensional Data

Автор: Peter B?hlmann; Sara van de Geer
Название: Statistics for High-Dimensional Data
ISBN: 3642268579 ISBN-13(EAN): 9783642268571
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This valuable compendium of statistical methods features a unique combination of methodology, theory, algorithms and applications. It covers recently developed approaches to handling large and complex data sets, including the Lasso and boosting methods.

High-dimensional Covariance Estimation

Автор: Pourahmadi Mohsen
Название: High-dimensional Covariance Estimation
ISBN: 1118034295 ISBN-13(EAN): 9781118034293
Издательство: Wiley
Рейтинг:
Цена: 12664.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences.

Analysis of Multivariate and High-Dimensional Data

Автор: Koch
Название: Analysis of Multivariate and High-Dimensional Data
ISBN: 0521887933 ISBN-13(EAN): 9780521887939
Издательство: Cambridge Academ
Рейтинг:
Цена: 10613.00 р.
Наличие на складе: Поставка под заказ.

Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.

High-dimensional data analysis

Название: High-dimensional data analysis
ISBN: 981432485X ISBN-13(EAN): 9789814324854
Издательство: World Scientific Publishing
Рейтинг:
Цена: 15048.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Over the years, significant developments have been taking place in high-dimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. This book intends to examine the issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction.

Statistical Analysis for High-Dimensional Data

Автор: Arnoldo Frigessi; Peter B?hlmann; Ingrid Glad; Met
Название: Statistical Analysis for High-Dimensional Data
ISBN: 3319270974 ISBN-13(EAN): 9783319270975
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyv gar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Topological and Statistical Methods for Complex Data

Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci
Название: Topological and Statistical Methods for Complex Data
ISBN: 3662513706 ISBN-13(EAN): 9783662513705
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.

Latent Factor Analysis for High-dimensional and Sparse Matrices

Автор: Yuan
Название: Latent Factor Analysis for High-dimensional and Sparse Matrices
ISBN: 9811967024 ISBN-13(EAN): 9789811967023
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.

Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition

Автор: Amaratunga
Название: Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition
ISBN: 1118356330 ISBN-13(EAN): 9781118356333
Издательство: Wiley
Рейтинг:
Цена: 17574.00 р.
Наличие на складе: Поставка под заказ.

Topological and Statistical Methods for Complex Data

Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci
Название: Topological and Statistical Methods for Complex Data
ISBN: 3662448998 ISBN-13(EAN): 9783662448991
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.

Applied Biclustering Methods for Big and High-Dimensional Data Using R

Автор: Kasim Adetayo, Shkedy Ziv, Kaiser Sebastian
Название: Applied Biclustering Methods for Big and High-Dimensional Data Using R
ISBN: 0367736853 ISBN-13(EAN): 9780367736859
Издательство: Taylor&Francis
Рейтинг:
Цена: 7501.00 р.
Наличие на складе: Нет в наличии.

Описание:

Proven Methods for Big Data Analysis

As big data has become standard in many application areas, challenges have arisen related to methodology and software development, including how to discover meaningful patterns in the vast amounts of data. Addressing these problems, Applied Biclustering Methods for Big and High-Dimensional Data Using R shows how to apply biclustering methods to find local patterns in a big data matrix.

The book presents an overview of data analysis using biclustering methods from a practical point of view. Real case studies in drug discovery, genetics, marketing research, biology, toxicity, and sports illustrate the use of several biclustering methods. References to technical details of the methods are provided for readers who wish to investigate the full theoretical background. All the methods are accompanied with R examples that show how to conduct the analyses. The examples, software, and other materials are available on a supplementary website.

High-dimensional Microarray Data Analysis

Автор: Shuichi Shinmura
Название: High-dimensional Microarray Data Analysis
ISBN: 9811359970 ISBN-13(EAN): 9789811359972
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия