Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis, Patrangenaru, Victor


Варианты приобретения
Цена: 24499.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Patrangenaru, Victor
Название:  Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis
ISBN: 9781439820506
Издательство: Taylor&Francis
Классификация:



ISBN-10: 1439820503
Обложка/Формат: Hardback
Страницы: 517
Вес: 0.98 кг.
Дата издания: 25.09.2015
Язык: English
Иллюстрации: 36 tables, black and white; 111 illustrations, black and white; 36 tables, black and white; 111 illustrations, black and white
Размер: 242 x 164 x 35
Читательская аудитория: Postgraduate, research & scholarly
Рейтинг:
Поставляется из: Европейский союз


Quality management and operations research

Автор: Faghih, Nezameddin Bonyadi, Ebrahim Sarreshtehdari, Lida
Название: Quality management and operations research
ISBN: 0367744902 ISBN-13(EAN): 9780367744908
Издательство: Taylor&Francis
Рейтинг:
Цена: 11255.00 р. 16078.00 -30%
Наличие на складе: Есть (1 шт.)
Описание: Offering a step-by-step approach for applying the Nonparametric Method with the Bayesian Approach to model complex relationships occurring in Reliability Engineering, Quality Management, and Operations Research, it also discusses survival and censored data, accelerated lifetime tests (issues in reliability data analysis), and R codes. This book uses the Nonparametric Bayesian approach in the fields of quality management and operations research. It presents a step-by-step approach for understanding and implementing these models, as well as includes R codes which can be used in any dataset. The book helps the readers to use statistical models in studying complex concepts and applying them to Operations Research, Industrial Engineering, Manufacturing Engineering, Computer Science, Quality and Reliability, Maintenance Planning and Operations Management.This book helps researchers, analysts, investigators, designers, producers, industrialists, entrepreneurs, and financial market decision makers, with finding the lifetime model of products, and for crucial decision-making in other markets.

An Introduction to nonparametric statistics

Автор: Kolassa, John E.
Название: An Introduction to nonparametric statistics
ISBN: 0367194848 ISBN-13(EAN): 9780367194840
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.

Nonparametric Regression Analysis of Longitudinal Data

Автор: Hans-Georg M?ller
Название: Nonparametric Regression Analysis of Longitudinal Data
ISBN: 038796844X ISBN-13(EAN): 9780387968445
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author`s Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work.

Nonparametric Functional Data Analysis

Автор: Fr?d?ric Ferraty; Philippe Vieu
Название: Nonparametric Functional Data Analysis
ISBN: 1441921419 ISBN-13(EAN): 9781441921413
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.

Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique

Автор: Nussbaum E. Michael
Название: Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique
ISBN: 1848726031 ISBN-13(EAN): 9781848726031
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.

Highlights include the following:

  • Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
  • Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
  • Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
  • Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
  • Problems in each chapter help readers test their understanding of the material.
  • Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
  • Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.

Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications

Автор: Chiara Brombin; Luigi Salmaso; Lara Fontanella; Lu
Название: Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications
ISBN: 3319263102 ISBN-13(EAN): 9783319263106
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book considers specific inferential issues arising from the analysis of dynamic shapes with the attempt to solve the problems at hand using probability models and nonparametric tests.

Nonparametric Statistical Methods

Автор: Hollander Myles
Название: Nonparametric Statistical Methods
ISBN: 0470387378 ISBN-13(EAN): 9780470387375
Издательство: Wiley
Рейтинг:
Цена: 17574.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by leading statisticians, this new edition has been completely updated to include additional modern topics and procedures, more real-world data sets, and more problems from real-life situations.

Nonparametric Statistical Methods For Complete and Censored Data

Автор: Desu, M.M. , Raghavarao, D.
Название: Nonparametric Statistical Methods For Complete and Censored Data
ISBN: 0367394952 ISBN-13(EAN): 9780367394950
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Balancing the "cookbook" approach of some texts with the more mathematical approach of others, Nonparametric Statistical Methods for Complete and Censored Data introduces commonly used non-parametric methods for complete data and extends those methods to right censored data analysis. Whenever possible, the authors derive their methodology from the general theory of statistical inference and introduce the concepts intuitively for students with minimal backgrounds. Derivations and mathematical details are relegated to appendices at the end of each chapter, which allows students to easily proceed through each chapter without becoming bogged down in a lot of mathematics.

In addition to the nonparametric methods for analyzing complete and censored data, the book covers optimal linear rank statistics, clinical equivalence, analysis of block designs, and precedence tests. To make the material more accessible and practical, the authors use SAS programs to illustrate the various methods included.



Exercises in each chapter, SAS code, and a clear, accessible presentation make this an outstanding text for a one-semester senior or graduate-level course in nonparametric statistics for students in a variety of disciplines, from statistics and biostatistics to business, psychology, and the social scientists.

Prerequisites: Students will need a solid background in calculus and a two-semester course in mathematical statistics.

Bayesian Nonparametric Data Analysis

Автор: Peter M?ller; Fernando Andres Quintana; Alejandro
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319368427 ISBN-13(EAN): 9783319368429
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

Data Analysis and Approximate Models

Автор: Davies, Patrick Laurie
Название: Data Analysis and Approximate Models
ISBN: 1482215861 ISBN-13(EAN): 9781482215861
Издательство: Taylor&Francis
Рейтинг:
Цена: 24499.00 р.
Наличие на складе: Нет в наличии.

Nonparametric Statistics with Applications to Scie nce and Engineering with R, Second Edition

Автор: Kvam
Название: Nonparametric Statistics with Applications to Scie nce and Engineering with R, Second Edition
ISBN: 1119268133 ISBN-13(EAN): 9781119268130
Издательство: Wiley
Рейтинг:
Цена: 16790.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The hypersexual female ghost continues to be a source of fascination in East Asian media, much like the sexually predatory vampire in American and European culture. But while vampires can be of either gender, erotic Chinese ghosts are almost exclusively female. The significance of this gender asymmetry in Chinese literary history is the subject of Judith Zeitlin`s meticulously researched new book.

Prior Processes and Their Applications

Автор: Phadia
Название: Prior Processes and Their Applications
ISBN: 3319327887 ISBN-13(EAN): 9783319327884
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a systematic and comprehensive treatment of various prior processes that have been developed over the past four decades for dealing with Bayesian approach to solving selected nonparametric inference problems. This revised edition has been substantially expanded to reflect the current interest in this area. After an overview of different prior processes, it examines the now pre-eminent Dirichlet process and its variants including hierarchical processes, then addresses new processes such as dependent Dirichlet, local Dirichlet, time-varying and spatial processes, all of which exploit the countable mixture representation of the Dirichlet process. It subsequently discusses various neutral to right type processes, including gamma and extended gamma, beta and beta-Stacy processes, and then describes the Chinese Restaurant, Indian Buffet and infinite gamma-Poisson processes, which prove to be very useful in areas such as machine learning, information retrieval and featural modeling. Tailfree and Polya tree and their extensions form a separate chapter, while the last two chapters present the Bayesian solutions to certain estimation problems pertaining to the distribution function and its functional based on complete data as well as right censored data. Because of the conjugacy property of some of these processes, most solutions are presented in closed form. However, the current interest in modeling and treating large-scale and complex data also poses a problem – the posterior distribution, which is essential to Bayesian analysis, is invariably not in a closed form, making it necessary to resort to simulation. Accordingly, the book also introduces several computational procedures, such as the Gibbs sampler, Blocked Gibbs sampler and slice sampling, highlighting essential steps of algorithms while discussing specific models. In addition, it features crucial steps of proofs and derivations, explains the relationships between different processes and provides further clarifications to promote a deeper understanding. Lastly, it includes a comprehensive list of references, equipping readers to explore further on their own.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия