Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Federated Learning, Ludwig


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ludwig
Название:  Federated Learning
ISBN: 9783030968984
Издательство: Springer
Классификация:

ISBN-10: 3030968987
Обложка/Формат: Soft cover
Вес: 0.00 кг.
Дата издания: 23.07.2023
Язык: English
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Federated Learning: A Comprehensive Overview of Methods and Applications presents an in-depth discussion of the most important issues and approaches to federated learning for researchers and practitioners. Federated Learning (FL) is an approach to machine learning in which the training data are not managed centrally. Data are retained by data parties that participate in the FL process and are not shared with any other entity. This makes FL an increasingly popular solution for machine learning tasks for which bringing data together in a centralized repository is problematic, either for privacy, regulatory or practical reasons. This book explains recent progress in research and the state-of-the-art development of Federated Learning (FL), from the initial conception of the field to first applications and commercial use. To obtain this broad and deep overview, leading researchers address the different perspectives of federated learning: the core machine learning perspective, privacy and security, distributed systems, and specific application domains. Readers learn about the challenges faced in each of these areas, how they are interconnected, and how they are solved by state-of-the-art methods. Following an overview on federated learning basics in the introduction, over the following 24 chapters, the reader will dive deeply into various topics. A first part addresses algorithmic questions of solving different machine learning tasks in a federated way, how to train efficiently, at scale, and fairly. Another part focuses on providing clarity on how to select privacy and security solutions in a way that can be tailored to specific use cases, while yet another considers the pragmatics of the systems where the federated learning process will run. The book also covers other important use cases for federated learning such as split learning and vertical federated learning. Finally, the book includes some chapters focusing on applying FL in real-world enterprise settings.
Дополнительное описание: Introduction to Federated Learning.- Tree-Based Models for Federated Learning Systems.- Semantic Vectorization: Text and Graph-Based Models.- Personalization in Federated Learning.- Personalized, Robust Federated Learning with Fed+.- Communication-Efficie



Demystifying Federated Learning for Blockchain and Industrial Internet of Things

Автор: Gaurav Dhiman, Sandeep Kautish
Название: Demystifying Federated Learning for Blockchain and Industrial Internet of Things
ISBN: 1668437333 ISBN-13(EAN): 9781668437339
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 42134.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Rediscovers, redefines, and reestablishes the most recent applications of federated learning using blockchain and IIoT to optimize data for next-generation networks. The book provides insights to readers in a way of inculcating the theme that shapes the next generation of secure communication.

Advances and Open Problems in Federated Learning

Автор: Adria Gascon, Aleksandra Korolova, Ananda Theertha Suresh, Arjun Nitin Bhagoji, Aurelien Bellet, Ayfer Ozgur, Badih Ghazi, Ben Hutchinson, Brendan Ave
Название: Advances and Open Problems in Federated Learning
ISBN: 1680837885 ISBN-13(EAN): 9781680837889
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 13721.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. This book describes the latest state-of-the art.

Security and Privacy in Federated Learning

Автор: Yu
Название: Security and Privacy in Federated Learning
ISBN: 9811986916 ISBN-13(EAN): 9789811986918
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: In this book, the authors highlight the latest research findings on the security and privacy of federated learning systems. The main attacks and counterattacks in this booming field are presented to readers in connection with inference, poisoning, generative adversarial networks, differential privacy, secure multi-party computation, homomorphic encryption, and shuffle, respectively. The book offers an essential overview for researchers who are new to the field, while also equipping them to explore this “uncharted territory.” For each topic, the authors first present the key concepts, followed by the most important issues and solutions, with appropriate references for further reading. The book is self-contained, and all chapters can be read independently. It offers a valuable resource for master’s students, upper undergraduates, Ph.D. students, and practicing engineers alike.

Trustworthy Federated Learning

Автор: Goebel
Название: Trustworthy Federated Learning
ISBN: 3031289951 ISBN-13(EAN): 9783031289958
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.

Automated Reasoning

Автор: Galmiche
Название: Automated Reasoning
ISBN: 3319942042 ISBN-13(EAN): 9783319942049
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 9th International Joint Conference on Automated Reasoning, IJCAR 2018, held in Oxford, United Kingdom, in July 2018, as part of the Federated Logic Conference, FLoC 2018.

Theory and Applications of Satisfiability Testing – SAT 2018

Автор: Beyersdorff
Название: Theory and Applications of Satisfiability Testing – SAT 2018
ISBN: 3319941437 ISBN-13(EAN): 9783319941431
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 21st International Conference on Theory and Applications of Satisfiability Testing, SAT 2018, held in Oxford, UK, in July 2018.The 20 revised full papers, 4 short papers, and 2 tool papers were carefully reviewed and selected from 58 submissions.

Handbook on Federated Learning

Автор: Edited By Saravanan Krishnan, A. Jose Anand, R. Sr
Название: Handbook on Federated Learning
ISBN: 103247162X ISBN-13(EAN): 9781032471624
Издательство: Taylor&Francis
Рейтинг:
Цена: 20671.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Federated Learning for IoT Applications

Автор: Yadav
Название: Federated Learning for IoT Applications
ISBN: 3030855619 ISBN-13(EAN): 9783030855611
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.

Communication Efficient Federated Learning for Wireless Networks

Автор: Chen
Название: Communication Efficient Federated Learning for Wireless Networks
ISBN: 3031512650 ISBN-13(EAN): 9783031512650
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

formal methods

Автор: Klaus Havelund
Название: formal methods
ISBN: 3319955810 ISBN-13(EAN): 9783319955810
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 22nd International Symposium on Formal Methods, FM 2018, held in Oxford, UK, in July 2018. The 44 full papers presented together with 2 invited papers were carefully reviewed and selected from 110 submissions.

Federated Learning for Wireless Networks

Автор: Hong Choong Seon, Khan Latif U., Chen Mingzhe
Название: Federated Learning for Wireless Networks
ISBN: 9811649626 ISBN-13(EAN): 9789811649622
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy.

Federated Learning Systems: Towards Next-Generation AI

Автор: Rehman Muhammad Habib Ur, Gaber Mohamed Medhat
Название: Federated Learning Systems: Towards Next-Generation AI
ISBN: 3030706036 ISBN-13(EAN): 9783030706036
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия