Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Pattern Recognition and Machine Intelligence, Bhabesh Deka; Pradipta Maji; Sushmita Mitra; Dhrub


Варианты приобретения
Цена: 11459.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Bhabesh Deka; Pradipta Maji; Sushmita Mitra; Dhrub
Название:  Pattern Recognition and Machine Intelligence
ISBN: 9783030348687
Издательство: Springer
Классификация:






ISBN-10: 3030348687
Обложка/Формат: Soft cover
Страницы: 637
Вес: 1.04 кг.
Дата издания: 2019
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 219 illustrations, color; 126 illustrations, black and white; l, 637 p. 345 illus., 219 illus. in color.
Размер: 234 x 156 x 35
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 8th International Conference, PReMI 2019, Tezpur, India, December 17-20, 2019, Proceedings, Part I
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions.


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Evaluating Learning Algorithms

Автор: Japkowicz
Название: Evaluating Learning Algorithms
ISBN: 1107653118 ISBN-13(EAN): 9781107653115
Издательство: Cambridge Academ
Рейтинг:
Цена: 8870.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book gives a solid basis for conducting performance evaluations of learning algorithms in practical settings with an emphasis on classification algorithms. The authors describe several techniques designed to deal with performance measures and methods, error estimation or re-sampling techniques, statistical significance testing, data set selection and evaluation benchmark design.

Pattern Recognition and Machine Intelligence

Автор: B. Uma Shankar; Kuntal Ghosh; Deba Prasad Mandal;
Название: Pattern Recognition and Machine Intelligence
ISBN: 3319698990 ISBN-13(EAN): 9783319698991
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2017,held in Kolkata, India, in December 2017. The total of 86 full papers presented in this volume were carefully reviewed and selected from 293 submissions.

Pattern Recognition and Machine Intelligence

Автор: Marzena Kryszkiewicz; Sanghamitra Bandyopadhyay; H
Название: Pattern Recognition and Machine Intelligence
ISBN: 3319199404 ISBN-13(EAN): 9783319199405
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the 6th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2015, held in Warsaw, Poland, in June/July 2015. The total of 53 full papers and 1 short paper presented in this volume were carefully reviewed and selected from 90 submissions. They were organized in topical sections named: foundations of machine learning; image processing; image retrieval; image tracking; pattern recognition; data mining techniques for large scale data; fuzzy computing; rough sets; bioinformatics; and applications of artificial intelligence.

Pattern Recognition and Machine Intelligence

Автор: Bhabesh Deka; Pradipta Maji; Sushmita Mitra; Dhrub
Название: Pattern Recognition and Machine Intelligence
ISBN: 3030348717 ISBN-13(EAN): 9783030348717
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions.

Ensemble Learning: Pattern Classification Using Ensemble Methods (Second Edition)

Автор: Rokach Lior
Название: Ensemble Learning: Pattern Classification Using Ensemble Methods (Second Edition)
ISBN: 9811201951 ISBN-13(EAN): 9789811201950
Издательство: World Scientific Publishing
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.

Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.

The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.

Machine Learning Applications: Emerging Trends

Автор: Rik Das, Siddhartha Bhattacharyya, Sudarshan Nandy
Название: Machine Learning Applications: Emerging Trends
ISBN: 3110608537 ISBN-13(EAN): 9783110608533
Издательство: Walter de Gruyter
Цена: 18586.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.

The Art of Feature Engineering: Essentials for Machine Learning

Автор: Pablo Duboue
Название: The Art of Feature Engineering: Essentials for Machine Learning
ISBN: 1108709389 ISBN-13(EAN): 9781108709385
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.

Extreme Value Theory-Based Methods for Visual Recognition

Автор: Walter J. Scheirer
Название: Extreme Value Theory-Based Methods for Visual Recognition
ISBN: 1627057005 ISBN-13(EAN): 9781627057004
Издательство: Turpin
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Невозможна поставка.

Описание: A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the ""average."" From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Understanding Machine Learning

Автор: Shalev-Shwartz
Название: Understanding Machine Learning
ISBN: 1107057132 ISBN-13(EAN): 9781107057135
Издательство: Cambridge Academ
Рейтинг:
Цена: 11194.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the `hows` and `whys` of machine-learning algorithms, making the field accessible to both students and practitioners.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия