Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Recent Advances in Ensembles for Feature Selection, Bolуn-Canedo Verуnica, Alonso-Betanzos Amparo


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Bolуn-Canedo Verуnica, Alonso-Betanzos Amparo
Название:  Recent Advances in Ensembles for Feature Selection
ISBN: 9783030079291
Издательство: Springer
Классификация:

ISBN-10: 3030079295
Обложка/Формат: Paperback
Страницы: 205
Вес: 0.31 кг.
Дата издания: 30.01.2019
Серия: Intelligent systems reference library
Язык: English
Издание: Softcover reprint of
Иллюстрации: 36 illustrations, color; 3 illustrations, black and white; xiv, 205 p. 39 illus., 36 illus. in color.
Размер: 23.39 x 15.60 x 1.17 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.


Outlier Ensembles: An Introduction

Автор: Aggarwal Charu C., Sathe Saket
Название: Outlier Ensembles: An Introduction
ISBN: 3319854747 ISBN-13(EAN): 9783319854748
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification.

Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction

Автор: Soto Jesus, Melin Patricia, Castillo Oscar
Название: Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction
ISBN: 3319712632 ISBN-13(EAN): 9783319712635
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on the fields of hybrid intelligent systems based on fuzzy systems, neural networks, bio-inspired algorithms and time series. Prediction errors are evaluated by the following metrics: Mean Absolute Error, Mean Square Error, Root Mean Square Error, Mean Percentage Error and Mean Absolute Percentage Error.

Outlier Ensembles

Автор: Charu C. Aggarwal; Saket Sathe
Название: Outlier Ensembles
ISBN: 331954764X ISBN-13(EAN): 9783319547640
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification.

Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Lakhmi C. Jain
Название: Feature Selection for Data and Pattern Recognition
ISBN: 3662456192 ISBN-13(EAN): 9783662456194
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 981135278X ISBN-13(EAN): 9789811352782
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction to Feature Selection.- Background.- Rough Set Theory.- Advance Concepts in RST.- Rough Set Based Feature Selection Techniques.- Unsupervised Feature Selection using RST.- Critical Analysis of Feature Selection Algorithms.- RST Source Code.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291680 ISBN-13(EAN): 9789813291683
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to rough set-based feature selection. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle.

Recent Advances in Ensembles for Feature Selection

Автор: Bol?n-Canedo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 331990079X ISBN-13(EAN): 9783319900797
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.

Ensembles in Machine Learning Applications

Автор: Oleg Okun; Giorgio Valentini; Matteo Re
Название: Ensembles in Machine Learning Applications
ISBN: 3662507064 ISBN-13(EAN): 9783662507063
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book collects papers from the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA), held as part of the 2010 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.

Fusion Methods for Unsupervised Learning Ensembles

Автор: Bruno Baruque
Название: Fusion Methods for Unsupervised Learning Ensembles
ISBN: 3642423280 ISBN-13(EAN): 9783642423284
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the potential of the ensemble meta-algorithm by describing and testing a technique based on the combination of ensembles and statistical PCA that is able to determine the presence of outliers in high-dimensional data sets.

Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319675877 ISBN-13(EAN): 9783319675879
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.

Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319884522 ISBN-13(EAN): 9783319884523
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Recent Advances in 3D Imaging, Modeling, and Reconstruction

Автор: Athanasios Voulodimos, Anastasios Doulamis
Название: Recent Advances in 3D Imaging, Modeling, and Reconstruction
ISBN: 1799829960 ISBN-13(EAN): 9781799829966
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 20236.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 3D image reconstruction is used in many fields, such as medicine, entertainment, and computer science. This highly demanded process comes with many challenges, such as images becoming blurry by atmospheric turbulence, getting snowed with noise, or becoming damaged within foreign regions. It is imperative to remain well-informed with the latest research in this field.

Recent Advances in 3D Imaging, Modeling, and Reconstruction is a collection of innovative research on the methods and common techniques of image reconstruction as well as the accuracy of these methods. Featuring coverage on a wide range of topics such as ray casting, holographic techniques, and machine learning, this publication is ideally designed for graphic designers, computer engineers, medical professionals, robotics engineers, city planners, game developers, researchers, academicians, and students.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия