Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates, Wilson Jeffrey R., Vazquez-Arreola Elsa, Chen (din) Ding-Geng


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wilson Jeffrey R., Vazquez-Arreola Elsa, Chen (din) Ding-Geng
Название:  Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates
ISBN: 9783030489069
Издательство: Springer
Классификация:



ISBN-10: 303048906X
Обложка/Формат: Paperback
Страницы: 192
Вес: 0.28 кг.
Дата издания: 13.10.2021
Язык: English
Размер: 23.39 x 15.60 x 1.04 cm
Ссылка на Издательство: Link
Поставляется из: Германии
Описание: This monograph provides a concise point of research topics and reference for modeling correlated response data with time-dependent covariates, and longitudinal data for the analysis of population-averaged models, highlighting methods by a variety of pioneering scholars.


Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates

Автор: Wilson Jeffrey R., Vazquez-Arreola Elsa, Chen (din) Ding-Geng
Название: Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates
ISBN: 3030489035 ISBN-13(EAN): 9783030489038
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph provides a concise point of research topics and reference for modeling correlated response data with time-dependent covariates, and longitudinal data for the analysis of population-averaged models, highlighting methods by a variety of pioneering scholars.

Statistical Modelling of Complex Correlated and Clustered Data Household Surveys in Africa

Автор: Ngianga-Bakwin Kandala
Название: Statistical Modelling of Complex Correlated and Clustered Data Household Surveys in Africa
ISBN: 1536159816 ISBN-13(EAN): 9781536159813
Издательство: Nova Science
Рейтинг:
Цена: 32312.00 р.
Наличие на складе: Невозможна поставка.

Описание: In order to assist a hospital in managing its resources and patients, modelling the length of stay is highly important. Recent health scholarship and practice has largely remained empirical, dwelling on primary data. This is critically important, first, because health planners generally rely on data to establish trends and patterns of disease burden at national or regional level. Secondly, epidemiologists depend on data to investigate possible risk factors of the disease. Yet the use of routine or secondary data has, in recent years, proved increasingly significant in such endeavours. Various units within the health systems collected such data primarily as part of the process for surveillance, monitoring and evaluation. Such data is sometimes periodically supplemented by population-based sample survey datasets. Thirdly, coupled with statistical tools, public health professionals are able to analyze health data and breathe life into what may turn out to be meaningless data. The main focus of this book is to present and showcase advanced modelling of routine or secondary survey data. Studies demonstrate that statistical literacy and knowledge are needed to understand health research outputs. The advent of user-friendly statistical packages combined with computing power and widespread availability of public health data resulted in more reported epidemiological studies in literature. However, analysis of secondary data, has some unique challenges. These are most widely reported health literature, so far has failed to recognize resulting in inappropriate analysis, and erroneous conclusions. This book presents the application of advanced statistical techniques to real examples emanating from routine or secondary survey data. These are essentially datasets in which the two editors have been involved, demonstrating how to tackle these challenges. Some of these challenges are: the complex sampling design of the surveys, the hierarchical nature of the data, the dependence of data at the sampled cluster and missing data among many more challenges. Using data from the Health Management Information System (HMIS), and Demographic and Health Survey (DHS), we provide various approaches and techniques of dealing with data complexity, how to handle correlated or clustered data. Each chapter presents an example code, which can be used to analyze similar data in R, Stata or SPSS. To make the book more concise, we have provided the codes on the books website. The book considers four main topics in the field of health sciences research: (i) structural equation modeling; (ii) spatial and spatio-temporal modeling; (iii) correlated or clustered copula modeling; and (iv) survival analysis. The book has potential to impact methodologists, including students undertaking Masters or Doctoral level programmes as well as other researchers seeking some related reference on quantitative analysis in public health or health sciences or other areas where data of similar nature would be applicable. Further the book can be a resource to public health professionals interested in quantitative approaches to answer questions of epidemiological nature. Each chapter starts with a motivating background, review of statistical methods, analysis and results, ending discussion and possible recommendations.

Handbook for Applied Modeling: Non-Gaussian and Correlated Data

Автор: Jamie D. Riggs
Название: Handbook for Applied Modeling: Non-Gaussian and Correlated Data
ISBN: 1316601056 ISBN-13(EAN): 9781316601051
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed for the applied practitioner, this book is a compact, entry-level guide to modeling and analyzing data that fail idealized assumptions. It explains and demonstrates core techniques, common pitfalls and data issues, and interpretation of model results, all with a focus on application, utility, and real-life data.

Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data

Автор: Sutradhar
Название: Advances and Challenges in Parametric and Semi-parametric Analysis for Correlated Data
ISBN: 3319312588 ISBN-13(EAN): 9783319312583
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This proceedings volume contains eight selected papers thatwere presented in the International Symposium in Statistics (ISS) 2015 OnAdvances in Parametric and Semi-parametric Analysis of Multivariate, TimeSeries, Spatial-temporal, and Familial-longitudinal Data, held in St. John`s,Canada from July 6 to 8, 2015.

Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS

Автор: Vonesh Edward F.
Название: Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS
ISBN: 1642953261 ISBN-13(EAN): 9781642953268
Издательство: Неизвестно
Рейтинг:
Цена: 27947.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately.

Generalized Linear and Nonlinear Models for Correlated Data

Название: Generalized Linear and Nonlinear Models for Correlated Data
ISBN: 1599946475 ISBN-13(EAN): 9781599946474
Издательство: Неизвестно
Рейтинг:
Цена: 21509.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Edward F. Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately.

Survival Analysis with Correlated Endpoints

Автор: Takeshi Emura; Shigeyuki Matsui; Virginie Rondeau
Название: Survival Analysis with Correlated Endpoints
ISBN: 981133515X ISBN-13(EAN): 9789811335150
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools.

Modeling Binary Correlated Responses using SAS, SPSS and R

Автор: Jeffrey R. Wilson; Kent A. Lorenz
Название: Modeling Binary Correlated Responses using SAS, SPSS and R
ISBN: 3319373617 ISBN-13(EAN): 9783319373614
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical tools to analyze correlated binary data are spread out in the existing literature. Data and computer programs will be publicly available in order for readers to replicate model development, but learning a new statistical language is not necessary with this book.

Modelling Longitudinal and Spatially Correlated Data

Автор: Timothy G. Gregoire; David R. Brillinger; Peter Di
Название: Modelling Longitudinal and Spatially Correlated Data
ISBN: 0387982167 ISBN-13(EAN): 9780387982168
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This refereed volume includes papers presented at a conference on modelling longitudinal and spatially correlated data. Many of the best researchers in the world have presented papers in an area with important applications to biostatistics and the environmental sciences.

Marginal Models

Автор: Wicher Bergsma; Marcel A. Croon; Jacques A. Hagena
Название: Marginal Models
ISBN: 1441918736 ISBN-13(EAN): 9781441918734
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Marginal models are often the best way of answering research questions involving dependent observations. This comprehensive overview of the basic principles of marginal modeling offers a wide range of possible applications through many real world examples.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия