Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Supervised Machine Learning for Text Analysis in R, Hvitfeldt Emil, Silge Julia


Варианты приобретения
Цена: 22202.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Hvitfeldt Emil, Silge Julia
Название:  Supervised Machine Learning for Text Analysis in R
ISBN: 9780367554187
Издательство: Taylor&Francis
Классификация:



ISBN-10: 0367554186
Обложка/Формат: Hardcover
Страницы: 402
Вес: 0.73 кг.
Дата издания: 04.11.2021
Серия: Chapman & hall/crc data science series
Язык: English
Иллюстрации: 1 tables, black and white; 57 line drawings, color; 8 line drawings, black and white; 57 illustrations, color; 8 illustrations, black and white
Размер: 23.39 x 15.60 x 2.24 cm
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages.


Supervised Machine Learning for Text Analysis in R

Автор: Hvitfeldt Emil, Silge Julia
Название: Supervised Machine Learning for Text Analysis in R
ISBN: 0367554194 ISBN-13(EAN): 9780367554194
Издательство: Taylor&Francis
Рейтинг:
Цена: 7961.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages.

Machine Learning and Data Analytics for Solving Business Problems

Автор: Alyoubi
Название: Machine Learning and Data Analytics for Solving Business Problems
ISBN: 3031184823 ISBN-13(EAN): 9783031184826
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents advances in business computing and data analytics by discussing recent and innovative machine learning methods that have been designed to support decision-making processes. These methods form the theoretical foundations of intelligent management systems, which allows for companies to understand the market environment, to improve the analysis of customer needs, to propose creative personalization of contents, and to design more effective business strategies, products, and services. This book gives an overview of recent methods – such as blockchain, big data, artificial intelligence, and cloud computing – so readers can rapidly explore them and their applications to solve common business challenges. The book aims to empower readers to leverage and develop creative supervised and unsupervised methods to solve business decision-making problems.

Supervised Machine Learning: Optimization Framework and Applications with SAS and R

Автор: Kolosova Tanya, Berestizhevsky Samuel
Название: Supervised Machine Learning: Optimization Framework and Applications with SAS and R
ISBN: 0367538822 ISBN-13(EAN): 9780367538828
Издательство: Taylor&Francis
Рейтинг:
Цена: 7501.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Supervised Machine Learning

Автор: Kolosova, Tatiana , Berestizhevsky, Samuel
Название: Supervised Machine Learning
ISBN: 0367277328 ISBN-13(EAN): 9780367277321
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Mixture Models and Applications

Автор: Bouguila Nizar, Fan Wentao
Название: Mixture Models and Applications
ISBN: 303023875X ISBN-13(EAN): 9783030238759
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature.

Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection;Present theoretical and practical developments in mixture-based modeling and their importance in different applications;Discusses perspectives and challenging future works related to mixture modeling.
Practical Smoothing: The Joys of P-splines

Автор: Paul H.C. Eilers, Brian D. Marx
Название: Practical Smoothing: The Joys of P-splines
ISBN: 1108482953 ISBN-13(EAN): 9781108482950
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: P-splines are widely used in statistics and machine learning for smoothing out noise in data and to avoid overtraining. This practical guide covers theory and a range of standard and non-standard applications with code in R for professionals and researchers looking for a simple, flexible and powerful smoothing tool.

Institute of Mathematical Statistics Textbooks

Автор: Amaral Turkman Maria Antуnia
Название: Institute of Mathematical Statistics Textbooks
ISBN: 1108703747 ISBN-13(EAN): 9781108703741
Издательство: Cambridge Academ
Рейтинг:
Цена: 6019.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.

Predictive statistics

Автор: Clarke, Bertrand S. (university Of Nebraska, Lincoln) Clarke, Jennifer L. (university Of Nebraska, Lincoln)
Название: Predictive statistics
ISBN: 1107028280 ISBN-13(EAN): 9781107028289
Издательство: Cambridge Academ
Рейтинг:
Цена: 12514.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Aimed at statisticians and machine learners, this retooling of statistical theory asserts that high-quality prediction should be the guiding principle of modeling and learning from data, then shows how. The fully predictive approach to statistical problems outlined embraces traditional subfields and `black box` settings, with computed examples.

Mixture Models and Applications

Автор: Bouguila Nizar, Fan Wentao
Название: Mixture Models and Applications
ISBN: 3030238784 ISBN-13(EAN): 9783030238780
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.

Statistical trend analysis of physically unclonable functions :

Автор: Zolfaghari, Behrouz,
Название: Statistical trend analysis of physically unclonable functions :
ISBN: 036775455X ISBN-13(EAN): 9780367754556
Издательство: Taylor&Francis
Рейтинг:
Цена: 7654.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical Trend Analysis of Physically Unclonable Functions first presents a review on cryptographic hardware and hardware-assisted cryptography. Afterwards, the authors present a combined survey and research work on PUFs using a systematic approach.

Cambridge series in statistical and probabilistic mathematics

Автор: Bouveyron, Charles Celeux, Gilles Murphy, T. Brendan (university College Dublin) Raftery, Adrian E. (university Of Washington)
Название: Cambridge series in statistical and probabilistic mathematics
ISBN: 110849420X ISBN-13(EAN): 9781108494205
Издательство: Cambridge Academ
Рейтинг:
Цена: 11563.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This accessible but rigorous introduction is written for advanced undergraduates and beginning graduate students in data science, as well as researchers and practitioners. It shows how a statistical framework yields sound estimation, testing and prediction methods, using extensive data examples and providing R code for many methods.

Machine Learning for Beginners: A Step-By-Step Guide to Understand Deep Learning, Data Science and Analysis, Basic Software and Algorithms for Artific

Автор: Brown David
Название: Machine Learning for Beginners: A Step-By-Step Guide to Understand Deep Learning, Data Science and Analysis, Basic Software and Algorithms for Artific
ISBN: 1801206031 ISBN-13(EAN): 9781801206037
Издательство: Неизвестно
Рейтинг:
Цена: 2757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Learn Machine Learning, Deep Learning, Data Science and More


Machine learning is here; it is changing the world in ways you might not know yet. From search engines to speech recognition on your phone, machine learning is taking over.


If you have taken an interest in machine learning and want to learn how it all works, then you need some guidance before you can dive-in to the complicated stuff.


This book explains machine learning, in simple English, for beginners of all levels.

In this book, you will learn how machines are able to use data to learn on their own, discover how you can create sophisticated programs without the need for complex programming, and see daily applications of machine learning in action


Here's what you will find inside:


  • Introduction to machine learning from history, types of machine learning and examples.
  • Basics of machine learning: You will learn about datasets and see examples of the ones you can download
  • Machine learning algorithms: You will learn about neural networks and see practical applications of machine learning and deep learning algorithms
  • Machine learning software: You will get started with machine learning and see some of the most popular scientific computing software platforms.
  • Artificial intelligence and why it is important: You will learn how artificial intelligence relates to machine learning and what the future looks like.
  • You will get access to datasets and machine learning software so you can try out your very own machine learning project.


FAQ


Q: Do I need prior programming experience to make use of the book?

A: No. This book is intended for complete beginners to machine learning. The language used is simple and the reader is taken from one concept to the next in a progressive manner.

Q: Will this book make an expert in machine learning?

A: This book is intended to give beginners a firm introduction into machine learning so they are better placed to understand advanced machine learning concepts.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия