Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Supervised Machine Learning for Text Analysis in R, Hvitfeldt Emil, Silge Julia


Варианты приобретения
Цена: 7961.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября

Добавить в корзину
в Мои желания

Автор: Hvitfeldt Emil, Silge Julia
Название:  Supervised Machine Learning for Text Analysis in R
ISBN: 9780367554194
Издательство: Taylor&Francis
Классификация:



ISBN-10: 0367554194
Обложка/Формат: Paperback
Страницы: 402
Вес: 0.56 кг.
Дата издания: 04.11.2021
Серия: Chapman & hall/crc data science series
Язык: English
Иллюстрации: 1 tables, black and white; 57 line drawings, color; 8 line drawings, black and white; 57 illustrations, color; 8 illustrations, black and white
Размер: 23.39 x 15.60 x 2.08 cm
Читательская аудитория: Postgraduate, research & scholarly
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages.


Supervised Machine Learning for Text Analysis in R

Автор: Hvitfeldt Emil, Silge Julia
Название: Supervised Machine Learning for Text Analysis in R
ISBN: 0367554186 ISBN-13(EAN): 9780367554187
Издательство: Taylor&Francis
Рейтинг:
Цена: 22202.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages.

Machine Learning and Data Analytics for Solving Business Problems

Автор: Alyoubi
Название: Machine Learning and Data Analytics for Solving Business Problems
ISBN: 3031184823 ISBN-13(EAN): 9783031184826
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents advances in business computing and data analytics by discussing recent and innovative machine learning methods that have been designed to support decision-making processes. These methods form the theoretical foundations of intelligent management systems, which allows for companies to understand the market environment, to improve the analysis of customer needs, to propose creative personalization of contents, and to design more effective business strategies, products, and services. This book gives an overview of recent methods – such as blockchain, big data, artificial intelligence, and cloud computing – so readers can rapidly explore them and their applications to solve common business challenges. The book aims to empower readers to leverage and develop creative supervised and unsupervised methods to solve business decision-making problems.

Mixture Models and Applications

Автор: Bouguila Nizar, Fan Wentao
Название: Mixture Models and Applications
ISBN: 303023875X ISBN-13(EAN): 9783030238759
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature.

Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection;Present theoretical and practical developments in mixture-based modeling and their importance in different applications;Discusses perspectives and challenging future works related to mixture modeling.
Statistical trend analysis of physically unclonable functions :

Автор: Zolfaghari, Behrouz,
Название: Statistical trend analysis of physically unclonable functions :
ISBN: 036775455X ISBN-13(EAN): 9780367754556
Издательство: Taylor&Francis
Рейтинг:
Цена: 7654.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical Trend Analysis of Physically Unclonable Functions first presents a review on cryptographic hardware and hardware-assisted cryptography. Afterwards, the authors present a combined survey and research work on PUFs using a systematic approach.

Statistical Analysis Techniques in Particle Physics - Fits, Density Estimation and Supervised Learning

Автор: Narsky
Название: Statistical Analysis Techniques in Particle Physics - Fits, Density Estimation and Supervised Learning
ISBN: 3527410864 ISBN-13(EAN): 9783527410866
Издательство: Wiley
Рейтинг:
Цена: 14882.00 р.
Наличие на складе: Поставка под заказ.

Supervised Machine Learning

Автор: Kolosova, Tatiana , Berestizhevsky, Samuel
Название: Supervised Machine Learning
ISBN: 0367277328 ISBN-13(EAN): 9780367277321
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Mixture Models and Applications

Автор: Bouguila Nizar, Fan Wentao
Название: Mixture Models and Applications
ISBN: 3030238784 ISBN-13(EAN): 9783030238780
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Gaussian Mixture Model Approach To Classifying Response Types.- Interactive Generation Of Calligraphic Trajectories From Gaussian Mixtures.- Mixture models for the analysis, edition, and synthesis of continuous time series.- Multivariate Bounded Asymmetric Gaussian Mixture Model.- Online Recognition Via A Finite Mixture Of Multivariate Generalized Gaussian Distributions.- L2 Normalized Data Clustering Through the Dirichlet Process Mixture Model of Von Mises Distributions with Localized Feature Selection.- Deriving Probabilistic SVM Kernels From Exponential Family Approximations to Multivariate Distributions for Count Data.- Toward an Efficient Computation of Log-likelihood Functions in Statistical Inference: Overdispersed Count Data Clustering.- A Frequentist Inference Method Based On Finite Bivariate And Multivariate Beta Mixture Models.- Finite Inverted Beta-Liouville Mixture Models with Variational Component Splitting.- Online Variational Learning for Medical Image Data Clustering.- Color Image Segmentation using Semi-Bounded Finite Mixture Models by Incorporating Mean Templates.- Medical Image Segmentation Based on Spatially Constrained Inverted Beta-Liouville Mixture Models.- Flexible Statistical Learning Model For Unsupervised Image Modeling And Segmentation.

Practical Smoothing: The Joys of P-splines

Автор: Paul H.C. Eilers, Brian D. Marx
Название: Practical Smoothing: The Joys of P-splines
ISBN: 1108482953 ISBN-13(EAN): 9781108482950
Издательство: Cambridge Academ
Рейтинг:
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: P-splines are widely used in statistics and machine learning for smoothing out noise in data and to avoid overtraining. This practical guide covers theory and a range of standard and non-standard applications with code in R for professionals and researchers looking for a simple, flexible and powerful smoothing tool.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Нет в наличии.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Probabilistic Foundations of Statistical Network Analysis

Автор: Crane
Название: Probabilistic Foundations of Statistical Network Analysis
ISBN: 1138585998 ISBN-13(EAN): 9781138585997
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. ? ? ? ? ? ?

Supervised Machine Learning: Optimization Framework and Applications with SAS and R

Автор: Kolosova Tanya, Berestizhevsky Samuel
Название: Supervised Machine Learning: Optimization Framework and Applications with SAS and R
ISBN: 0367538822 ISBN-13(EAN): 9780367538828
Издательство: Taylor&Francis
Рейтинг:
Цена: 7501.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Analysis and Design of Machine Learning Techniques

Автор: Patrick Stalph
Название: Analysis and Design of Machine Learning Techniques
ISBN: 3658049367 ISBN-13(EAN): 9783658049362
Издательство: Springer
Рейтинг:
Цена: 13060.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Manipulating or grasping objects seems like a trivial task for humans, as these are motor skills of everyday life. The author makes a connection between robotics and cognitive sciences by analyzing motor skill learning using implementations that could be found in the human brain - at least to some extent.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия