Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advanced Data Mining Tools and Methods for Social Computing, de Sourav, Dey Sandip, Bhattacharyya Siddhartha


Варианты приобретения
Цена: 19370.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: de Sourav, Dey Sandip, Bhattacharyya Siddhartha
Название:  Advanced Data Mining Tools and Methods for Social Computing
ISBN: 9780323857086
Издательство: Elsevier Science
Классификация:
ISBN-10: 0323857086
Обложка/Формат: Paperback
Страницы: 292
Вес: 0.39 кг.
Дата издания: 28.01.2022
Серия: Hybrid computational intelligence for pattern analysis and understanding
Язык: English
Размер: 22.86 x 15.24 x 1.55 cm
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis.


A Hands-On Introduction to Data Science

Автор: Chirag Shah
Название: A Hands-On Introduction to Data Science
ISBN: 1108472443 ISBN-13(EAN): 9781108472449
Издательство: Cambridge Academ
Рейтинг:
Цена: 7286.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Quantum Machine Learning: What Quantum Computing Means to Data Mining

Автор: Wittek Peter
Название: Quantum Machine Learning: What Quantum Computing Means to Data Mining
ISBN: 0128100400 ISBN-13(EAN): 9780128100400
Издательство: Elsevier Science
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data

Автор: Bergmeir
Название: Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data
ISBN: 3658203668 ISBN-13(EAN): 9783658203665
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets.

Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing

Автор: Kumar Rajesh, Dohare R. K., Dubey Harishchandra
Название: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing
ISBN: 9813348615 ISBN-13(EAN): 9789813348615
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first part is advances in systems and it is dedicated to applications of the artificial neural networks, evolutionary computation, swarm intelligence, artificial immune systems, fuzzy system, autonomous and multi-agent systems, machine learning, other intelligent systems and related areas.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Advances in Computing and Data Sciences: 4th International Conference, Icacds 2020, Valletta, Malta, April 24-25, 2020, Revised Selected Papers

Автор: Singh Mayank, Gupta P. K., Tyagi Vipin
Название: Advances in Computing and Data Sciences: 4th International Conference, Icacds 2020, Valletta, Malta, April 24-25, 2020, Revised Selected Papers
ISBN: 981156633X ISBN-13(EAN): 9789811566332
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the post-conference proceedings of the 4th International Conference on Advances in Computing and Data Sciences, ICACDS 2020, held in Valletta, Malta, in April 2020.*The 46 full papers were carefully reviewed and selected from 354 submissions.

Advances in Computing and Data Sciences: 5th International Conference, ICACDS 2021, Nashik, India, April 23-24, 2021, Revised Selected Papers, Part II

Автор: Singh Mayank, Tyagi Vipin, Gupta P. K.
Название: Advances in Computing and Data Sciences: 5th International Conference, ICACDS 2021, Nashik, India, April 23-24, 2021, Revised Selected Papers, Part II
ISBN: 3030882438 ISBN-13(EAN): 9783030882433
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This two-volume book constitutes the post-conference proceedings of the 5th International Conference on Advances in Computing and Data Sciences, ICACDS 2021, held in Nashik, India, in April 2021.*The 103 full papers were carefully reviewed and selected from 781 submissions.

Advances in Computing and Data Sciences: 5th International Conference, Icacds 2021, Nashik, India, April 23-24, 2021, Revised Selected Papers, Part I

Автор: Singh Mayank, Tyagi Vipin, Gupta P. K.
Название: Advances in Computing and Data Sciences: 5th International Conference, Icacds 2021, Nashik, India, April 23-24, 2021, Revised Selected Papers, Part I
ISBN: 3030814610 ISBN-13(EAN): 9783030814618
Издательство: Springer
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An Energy-Efficient Hybrid Hierarchical Clustering Algorithm for Wireless Sensor Devices in IoT.- Fund Utilization under Parliament Local Development Scheme: Machine Learning base Approach.- Implementing Automatic Ontology Generation for the New Zealand Open Government Data: An Evaluative Approach.- Blockchain based Framework to Maintain Chain of Custody (CoC) in a Forensic Investigation. - A light SRGAN for Up-Scaling of Low Resolution and High Latency Images.- Energy Efficient Clustering Routing Protocol and ACO Algorithm in WSN.- Efficient Social Distancing Detection using Object Detection and Triangle Similarity.- Explaining a Black-Box Sentiment Analysis Model with Local Interpretable Model Diagnostics Explanation (LIME).- Spelling Checking and Error Corrector System for Marathi Language Text using Minimum Edit Distance Algorithm.- A Study on Morphological Analyser for Indian Languages: A Literature Perspective.- Cyber Safety Against Social Media Abusing.- Predictive Rood Pattern Search for Efficient Video Compression.- An Effective Approach For Classifying Acute Lymbphoblastic Luekemia Using Hybrid Hierarchial Classifiers.- Abnormal Blood Vessels Segmentation for Proliferative Diabetic Retinopathy Screening Using Convolutional Neural Network. - Predictive Programmatic Classification Model to Improve Ad-Campaign Click Through Rate.- Live stream processing techniques to assist unmanned, regulated railway crossings.- Most Significant Bit-Plane based Local Ternary Pattern for Biomedical Image Retrieval.- Facial Monitoring Using Gradient Based Approach.- Overlapped Circular Convolution based feature extraction algorithm for classification of high dimensional datasets.- Binary Decision Tree Based Packet Queuing Schema for Next Generation Firewall.- Automatic Tabla Stroke Source Separation Using Machine Learning.- Classification of Immunity Booster Medicinal Plants using CNN: A Deep Learning Approach.- Machine Learning Model Interpretability in NLP and Computer Vision Applications.- Optimal Sizing and Siting of Multiple Dispersed Generation System using Metaheuristic Algorithm.- Design of a Fused Triple Convolutional Neural Network for Malware Detection: A Visual Classification Approach.- Mobile Agent Security using Lagrange Interpolation with Multilayer Perception Neural Network.- Performance Analysis of Channel coding techniques for 5G networks.- An Ensemble Learning Approach for Software Defect Prediction in Developing Quality Software Product.- A Study on Energy-Aware Virtual Machine Consolidation Policies in Cloud Data Centers using Cloudsim Toolkit.- Predicting Insomnia Using Multilayer Stacked Ensemble Model. - A novel encryption scheme based on Fully Homomorphic Encryption and RR-AES along with privacy preservation for vehicular network.- Key-Based Decoding for Coded Modulation Schemes in the presence of ISI.- Optimizing the Performance of KNN Classifier for Human Activity Recognition.- Face Recognition with Disguise and makeup Variations Using Image Processing and Machine Learning.- Attention-based deep Fusion Network for Retinal Lesion Segmentation in Fundus Image.- Visibility improvement in hazy conditions via a deep learning based image fusion approach.- Performance of Reinforcement Learning Simulation: x86 v/s ARM.- A Performance Study of Probabilistic Possibilistic Fuzzy C-Means Clustering Algorithm.- Optimized Random Forest Algorithm with Parameter Tuning for Predicting Heart Disease.- Machine Learning Based Techniques for Detection of Renal Calculi in Ultrasound Images.- Unsupervised Change Detection in Remote Sensing Images Using CNN Based Transfer Learning.- Biological Sequence Embedding based Classification for MERS and SARS.- Supply Path Optimization in Video Advertising Landscape.- Stack-based CNN Approach to Covid-19 Detection.- Performance Analysis of Various Classifiers for Social Intimidating Activities Detection.- Technique for Enhancing the efficiency and security of lightweight IoT

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th Internat

Автор: Reyes Mauricio, Henriques Abreu Pedro, Cardoso Jaime
Название: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data: 4th Internat
ISBN: 3030874435 ISBN-13(EAN): 9783030874438
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: iMIMIC 2021 Workshop.- Interpretable Deep Learning for Surgical Tool Management.- Soft Attention Improves Skin Cancer Classification Performance.- Deep Gradient based on Collective Arti cial Intelligence for AD Diagnosis and Prognosis.- This explains That: Congruent Image-Report Generation for Explainable Medical Image Analysis with Cyclic Generative Adversarial Networks.- Visual Explanation by Unifying Adversarial Generation and Feature Importance Attributions.- The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data.- Voxel-level Importance Maps for Interpretable Brain Age Estimation.- TDA4MedicalData Workshop.- Lattice Paths for Persistent Diagrams.- Neighborhood complex based machine learning (NCML) models for drug design.- Predictive modelling of highly multiplexed tumour tissue images by graph neural networks.- Statistical modeling of pulmonary vasculatures with topological priors in CT volumes.- Topological Detection of Alzheimer's Disease using Betti Curves.

Cognitive Computing: Implementing Big Data Machine Learning Solutions

Автор: Hurwitz, Kaufman Marcia, Bowles Adrian
Название: Cognitive Computing: Implementing Big Data Machine Learning Solutions
ISBN: 1118896629 ISBN-13(EAN): 9781118896624
Издательство: Wiley
Рейтинг:
Цена: 6018.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive guide to learning technologies that unlock the value in big data Cognitive Computing provides detailed guidance toward building a new class of systems that learn from experience and derive insights to unlock the value of big data.

The Art of Feature Engineering: Essentials for Machine Learning

Автор: Pablo Duboue
Название: The Art of Feature Engineering: Essentials for Machine Learning
ISBN: 1108709389 ISBN-13(EAN): 9781108709385
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия